Skip to main content
Log in

Discovery of N-phenyl-1-(phenylsulfonamido)cyclopropane-1-carboxamide analogs as NLRP3 inflammasome inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Two series of novel NLRP3 inflammasome inhibitors are designed, synthesized, and evaluated in an effort to develop diversified analogs based on the N-(phenylcarbamoyl)benzenesulfonamide scaffold. SAR studies reveal that the sulfonylurea linker can tolerate chemical modifications with either simply changing over the position of carbonyl and sulfonyl group or structurally flexibly inserting a cyclopropyl group, leading to identification of several more potent and diversified NLRP3 antagonists (e.g., 9) with low nanomolar inhibitory activities. Further studies indicate that these two series of compounds with low cytotoxicity exhibited weak effects on the generation of NO and TNF-a. The findings may serve as good starting points for the development of more potent NLRP3 inflammasome inhibitors as valuable pharmacological probes or potential drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weed DL. The merger of bioethics and epidemiology. J Clin Epidemiol. 1991;44:15S–22S.

    Article  PubMed  Google Scholar 

  2. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8:57–69. https://doi.org/10.1038/nrn2038.

    Article  CAS  PubMed  Google Scholar 

  3. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50. https://doi.org/10.1146/annurev.immunol.021908.132612.

    Article  CAS  PubMed  Google Scholar 

  4. Wen H, Miao EA, Ting JP. Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity. 2013;39:432–41. https://doi.org/10.1016/j.immuni.2013.08.037.

    Article  CAS  PubMed  Google Scholar 

  5. Prochnicki T, Latz E. Inflammasomes on the crossroads of innate immune recognition and metabolic control. Cell Metab. 2017;26:71–93. https://doi.org/10.1016/j.cmet.2017.06.018.

    Article  CAS  PubMed  Google Scholar 

  6. Baldwin AG, Brough D, Freeman S. Inhibiting the inflammasome: a chemical perspective. J Med Chem. 2016;59:1691–710. https://doi.org/10.1021/acs.jmedchem.5b01091.

    Article  CAS  PubMed  Google Scholar 

  7. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17:588–606. https://doi.org/10.1038/nrd.2018.97.

    Article  CAS  PubMed  Google Scholar 

  8. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41. https://doi.org/10.1038/nature04516.

    Article  CAS  PubMed  Google Scholar 

  9. Mastrocola R, Penna C, Tullio F, Femmino S, Nigro D, Chiazza F, et al. Pharmacological Inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid Med Cell Longev. 2016;2016:5271251. https://doi.org/10.1155/2016/5271251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E. The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol. 2015;10:395–424. https://doi.org/10.1146/annurev-pathol-012414-040431.

    Article  CAS  PubMed  Google Scholar 

  11. Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011;29:707–35. https://doi.org/10.1146/annurev-immunol-031210-101405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61. https://doi.org/10.1038/nature08938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen G, Shaw MH, Kim YG, Nunez G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol. 2009;4:365–98. https://doi.org/10.1146/annurev.pathol.4.110807.092239.

    Article  CAS  PubMed  Google Scholar 

  14. Wang S, Yuan YH, Chen NH, Wang HB. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease. Int Immunopharmacol. 2019;67:458–64. https://doi.org/10.1016/j.intimp.2018.12.019.

    Article  CAS  PubMed  Google Scholar 

  15. Huang Y, Jiang H, Chen Y, Wang X, Yang Y, Tao J, et al. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol Med. 2018;10. https://doi.org/10.15252/emmm.201708689.

  16. Jiang H, He H, Chen Y, Huang W, Cheng J, Ye J, et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med. 2017;214:3219–38. https://doi.org/10.1084/jem.20171419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He H, Jiang H, Chen Y, Ye J, Wang A, Wang C, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun. 2018;9:2550. https://doi.org/10.1038/s41467-018-04947-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yin J, Zhao F, Chojnacki JE, Fulp J, Klein WL, Zhang S, et al. NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol Neurobiol. 2018;55:1977–87. https://doi.org/10.1007/s12035-017-0467-9.

    Article  CAS  PubMed  Google Scholar 

  19. Gordon R, Albornoz EA, Christie DC, Langley MR, Kumar V, Mantovani S, et al. Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med. 2018;10. https://doi.org/10.1126/scitranslmed.aah4066.

  20. Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y, et al. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab. 2014;34:660–7. https://doi.org/10.1038/jcbfm.2013.242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mao Q, Qin WZ, Zhang A, Ye N. Recent advances in dopaminergic strategies for the treatment of Parkinson’s disease. Acta Pharm Sin. 2020;41:471–82. https://doi.org/10.1038/s41401-020-0365-y.

    Article  CAS  Google Scholar 

  22. Ren ZX, Zhao YF, Cao T, Zhen XC. Dihydromyricetin protects neurons in an MPTP-induced model of Parkinson’s disease by suppressing glycogen synthase kinase-3 beta activity. Acta Pharm Sin. 2016;37:1315–24. https://doi.org/10.1038/aps.2016.42.

    Article  CAS  Google Scholar 

  23. Schwaid AG, Spencer KB. Strategies for targeting the NLRP3 inflammasome in the clinical and preclinical space. J Med Chem. 2020. https://doi.org/10.1021/acs.jmedchem.0c01307.

  24. Dai Z, Chen XY, An LY, Li CC, Zhao N, Yang F, et al. Development of novel tetrahydroquinoline inhibitors of NLRP3 inflammasome for potential treatment of DSS-induced mouse colitis. J Med Chem. 2020. https://doi.org/10.1021/acs.jmedchem.0c01924.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen Y, He H, Jiang H, Li L, Hu Z, Huang H, et al. Discovery and optimization of 4-oxo-2-thioxo-thiazolidinones as NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inhibitors. Bioorg Med Chem Lett. 2020;30:127021. https://doi.org/10.1016/j.bmcl.2020.127021.

    Article  CAS  PubMed  Google Scholar 

  26. Perregaux DG, McNiff P, Laliberte R, Hawryluk N, Peurano H, Stam E, et al. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J Pharm Exp Ther. 2001;299:187–97.

    CAS  Google Scholar 

  27. Dempsey C, Rubio Araiz A, Bryson KJ, Finucane O, Larkin C, Mills EL, et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-beta and cognitive function in APP/PS1 mice. Brain Behav Immun. 2017;61:306–16. https://doi.org/10.1016/j.bbi.2016.12.014.

    Article  CAS  PubMed  Google Scholar 

  28. Coll RC, Robertson AA, Chae JJ, Higgins SC, Munoz-Planillo R, Inserra MC, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21:248–55. https://doi.org/10.1038/nm.3806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Hout GP, Bosch L, Ellenbroek GH, de Haan JJ, van Solinge WW, Cooper MA, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J. 2017;38:828–36. https://doi.org/10.1093/eurheartj/ehw247.

    Article  CAS  PubMed  Google Scholar 

  30. van der Heijden T, Kritikou E, Venema W, van Duijn J, van Santbrink PJ, Slutter B, et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report. Arterioscler Thromb Vasc Biol. 2017;37:1457–61. https://doi.org/10.1161/ATVBAHA.117.309575.

    Article  CAS  PubMed  Google Scholar 

  31. Ren H, Kong Y, Liu Z, Zang D, Yang X, Wood K, et al. Selective NLRP3 (pyrin domain-containing protein 3) inflammasome inhibitor reduces brain injury after intracerebral hemorrhage. Stroke. 2018;49:184–92. https://doi.org/10.1161/STROKEAHA.117.018904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Primiano MJ, Lefker BA, Bowman MR, Bree AG, Hubeau C, Bonin PD, et al. Efficacy and pharmacology of the NLRP3 inflammasome inhibitor CP-456,773 (CRID3) in murine models of dermal and pulmonary inflammation. J Immunol. 2016;197:2421–33. https://doi.org/10.4049/jimmunol.1600035.

    Article  CAS  PubMed  Google Scholar 

  33. Peterson LA. Reactive metabolites in the biotransformation of molecules containing a furan ring. Chem Res Toxicol. 2013;26:6–25. https://doi.org/10.1021/tx3003824.

    Article  CAS  PubMed  Google Scholar 

  34. Jochheim CM, Davis MR, Baillie KM, Ehlhardt WJ, Baillie TA. Glutathione-dependent metabolism of the antitumor agent sulofenur. Evidence for the formation of p-chlorophenyl isocyanate as a reactive intermediate. Chem Res Toxicol. 2002;15:240–8.

    Article  CAS  PubMed  Google Scholar 

  35. Salla M, Butler MS, Massey NL, Reid JC, Cooper MA, Robertson AAB. Synthesis of deuterium-labelled analogues of NLRP3 inflammasome inhibitor MCC950. Bioorg Med Chem Lett. 2018;28:793–5. https://doi.org/10.1016/j.bmcl.2017.12.054.

    Article  CAS  PubMed  Google Scholar 

  36. Salla M, Butler MS, Pelingon R, Kaeslin G, Croker DE, Reid JC, et al. Identification, synthesis, and biological evaluation of the major human metabolite of NLRP3 inflammasome inhibitor MCC950. ACS Med Chem Lett. 2016;7:1034–8. https://doi.org/10.1021/acsmedchemlett.6b00198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hill JR, Coll RC, Sue N, Reid JC, Dou J, Holley CL, et al. Sulfonylureas as concomitant insulin secretagogues and NLRP3 inflammasome inhibitors. ChemMedChem. 2017;12:1449–57. https://doi.org/10.1002/cmdc.201700270.

    Article  CAS  PubMed  Google Scholar 

  38. Agarwal S, Sasane S, Shah HA, Pethani JP, Deshmukh P, Vyas V, et al. Discovery of N-Cyano-sulfoximineurea derivatives as potent and orally bioavailable NLRP3 inflammasome inhibitors. ACS Med Chem Lett. 2020;11:414–8. https://doi.org/10.1021/acsmedchemlett.9b00433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hill JR, Coll RC, Schroder K, Robertson AAB. Design, synthesis and evaluation of an NLRP3 inhibitor diazirine photoaffinity probe. Tetrahedron Lett. 2020;61:151849. https://doi.org/10.1016/j.tetlet.2020.151849.

    Article  CAS  Google Scholar 

  40. Harrison D, Boutard N, Brzozka K, Bugaj M, Chmielewski S, Cierpich A, et al. Discovery of a series of ester-substituted NLRP3 inflammasome inhibitors. Bioorg Med Chem Lett. 2020;30:127560. https://doi.org/10.1016/j.bmcl.2020.127560.

    Article  CAS  PubMed  Google Scholar 

  41. Talele TT. The “Cyclopropyl Fragment” is a versatile player that frequently appears in preclinical/clinical drug molecules. J Med Chem. 2016;59:8712–56. https://doi.org/10.1021/acs.jmedchem.6b00472.

    Article  CAS  PubMed  Google Scholar 

  42. Savka RD, Plenio H. A hexahydro-s-indacene based NHC ligand for olefin metathesis catalysts. J Organomet Chem. 2012;710:68–74.

    Article  CAS  Google Scholar 

  43. Kelder J, Grootenhuis PD, Bayada DM, Delbressine LP, Ploemen JP. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res. 1999;16:1514–9. https://doi.org/10.1023/a:1015040217741.

    Article  CAS  PubMed  Google Scholar 

  44. Franchi L, Munoz-Planillo R, Nunez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol. 2012;13:325–32. https://doi.org/10.1038/ni.2231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schumann RR, Belka C, Reuter D, Lamping N, Kirschning CJ, Weber JR, et al. Lipopolysaccharide activates caspase-1 (interleukin-1-converting enzyme) in cultured monocytic and endothelial cells. Blood. 1998;91:577–84.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Gu R, Jia J, Hou T, Zheng LT, Zhen X. Inhibition of macrophage migration inhibitory factor (MIF) tautomerase activity suppresses microglia-mediated inflammatory responses. Clin Exp Pharm Physiol. 2016;43:1134–44. https://doi.org/10.1111/1440-1681.12647.

    Article  CAS  Google Scholar 

  47. Xu Z, Wu J, Zheng J, Ma H, Zhang H, Zhen X, et al. Design, synthesis and evaluation of a series of non-steroidal anti-inflammatory drug conjugates as novel neuroinflammatory inhibitors. Int Immunopharmacol. 2015;25:528–37. https://doi.org/10.1016/j.intimp.2015.02.033.

    Article  CAS  PubMed  Google Scholar 

  48. Wu J, Du J, Gu R, Zhang L, Zhen X, Li Y, et al. Inhibition of neuroinflammation by synthetic androstene derivatives incorporating amino acid methyl esters on activated BV-2 microglia. ChemMedChem. 2015;10:610–6. https://doi.org/10.1002/cmdc.201500027.

    Article  CAS  PubMed  Google Scholar 

  49. Tao L, Zhang F, Hao L, Wu J, Jia J, Liu JY, et al. 1-O-tigloyl-1-O-deacetyl-nimbolinin B inhibits LPS-stimulated inflammatory responses by suppressing NF-kappaB and JNK activation in microglia cells. J Pharm Sci. 2014;125:364–74.

    Article  CAS  Google Scholar 

  50. Han CJ, Zheng JY, Sun L, Yang HC, Cao ZQ, Zhang XH, et al. The oncometabolite 2-hydroxyglutarate inhibits microglial activation via the AMPK/mTOR/NF-kappaB pathway. Acta Pharm Sin. 2019;40:1292–302. https://doi.org/10.1038/s41401-019-0225-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31970909, 81703330, and 81372688), the Natural Science Foundation of Jiangsu Province (BK20170347), the Priority Academic Program Development of the Jiangsu Higher Education Institutes (PAPD), Suzhou Municipal Science and Technology Bureau (SYS2020092), and the Jiangsu Key Laboratory of Neuropsychiatric Diseases (BM2013003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Tai Zheng or Na Ye.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Cao, Z., Cheng, J. et al. Discovery of N-phenyl-1-(phenylsulfonamido)cyclopropane-1-carboxamide analogs as NLRP3 inflammasome inhibitors. Med Chem Res 30, 1294–1308 (2021). https://doi.org/10.1007/s00044-021-02740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02740-7

Keywords

Navigation