Skip to main content

Advertisement

Log in

Anti-TB evaluation of novel 2,3-dihydroquinazolin-4(1H)-ones and in silico studies of the active compounds

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In vitro anti-tubercular activity of a series of 15 novel 2,3-dihydroquinazolin-4(1H)-one analogues were evaluated against Mycobacterium tuberculosis H37Ra (ATCC 25177 strain). Among the series, seven compounds showed moderate to good anti-TB activity with minimum inhibitory concentration (MIC) values ranging from 25.0–12.5 μg/mL. Further, in silico experiments were carried out to identify the probable ligand-protein interaction. Molecular docking of the target compounds into the active site of enzymes 1DQY Antigen 85C from Mycobacterium Tuberculosis and 2NSD Enoyl Acyl Carrier Protein Reductase reveals notable information on the possible binding interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sotgiu G, Centis R, D’ambrosio L, Migliori GB. Tuberculosis treatment and drug regimens. Cold Spring Harb Perspect Med. 2015;5:a017822–a017822.

    Article  Google Scholar 

  2. Singh P, Mishra AK, Malonia SK, Chauhan DS, Sharma VD, Venkatesan K, Katoch VM. The paradox of pyrazinamide: an update on the molecular mechanisms of pyrazinamide resistance in Mycobacteria. J Commun Dis. 2006;38:288–98.

    PubMed  Google Scholar 

  3. Srivastava S, Srivastava S. Biological activity of quinazoline: A review. Int J Pharm Sci. 2015;6:1206–13.

    CAS  Google Scholar 

  4. Mhaske SB, Argade NP. The chemistry of recently isolated naturally occurring quinazolinone alkaloids. Tetrahedron. 2006;62:9787–826.

    Article  CAS  Google Scholar 

  5. Mehta DR, Naravane JS, Desai RM. Vasicinone. A bronchodilator principle from Adhatoda Vasica Nees (N. O. Acanthaceae.). J. Org. Chem.1963;28:445–8.

    Article  CAS  Google Scholar 

  6. Amin AH, Mehta DR. A bronchodilator alkaloid (vasicinone) from Adhatoda vasica Nees. Nature. 1959;183:1317–1317.

    Article  Google Scholar 

  7. Joshi BS, Newton MG, Lee DW, Barber AD, Pelletier SW. Reversal of absolute stereochemistry of the pyrrolo[2,1-b]quinazoline alkaloids vasicine, vasicinone, vasicinol and vasicinolone. Tetrahedron Asymmetry. 1996;7:25–8.

    Article  CAS  Google Scholar 

  8. Atal, C. K. Chemistry and pharmacology of vasicine: a new oxytocic and abortifacient. Delhi: Raj Bandu Industrial Co; 1980.

  9. Ghosal S, Chauhan PSRB, Mehta R. Alkaloids of Sida cordifolia. Phytochemistry. 1975;14:830–2.

    Article  CAS  Google Scholar 

  10. Al-Shamma A, Drake S, Flynn DL, Mitscher LA, Park YH, Rao GSR, Simpson A, Swayze JK, Veysoglu T, Wu SS. Antimicrobial agents from higher plants. Antimicrobial agents from Peganum harmala seeds. J Nat Prod. 1981;44:745–7.

    Article  CAS  Google Scholar 

  11. Kamal A, Ramana KV, Rao MV. Chemoenzymatic synthesis of pyrrolo[2,1-b]quinazolinones: lipase-catalyzed resolution of vasicinone. J Org Chem. 2001;66:997–1001.

    Article  CAS  Google Scholar 

  12. Molina P, Tarraga A, Gonzalez-Tejero A. A convenient divergent approach to the alkaloids isaindigotone and luotonin A. Synthesis. 2000;11:1523–5.

    Article  Google Scholar 

  13. Zhang H, Liu H, Luo X, Wang Y, Liu Y, Jin H, Liu Z, Yang W, Yu P, Zhang L, Zhang L. Design, synthesis and biological activities of 2,3-dihydroquinazolin-4(1H)-one derivatives as TRPM2 inhibitors. Eur J Med Chem. 2018;152:235–52.

    Article  CAS  Google Scholar 

  14. Nagaladinne N, Hindustan A, Nayakanti D. Synthesis, characterization and docking studies of N-methyl-2, 3-Dihydro quinazolin-4-ones linked 1,3-thiazole hybrids as potent anti-tubercular agents. Indian J Pharm Sci. 2020;82:984.

    Article  Google Scholar 

  15. Marvania B, Lee PC, Chaniyara R, Dong H, Suman S, Kakadiya R, Su TL. Design, synthesis and antitumor evaluation of phenyl N-mustard-quinazoline conjugates. Bioorg Med Chem. 2011;19:1987–98.

    Article  CAS  Google Scholar 

  16. El-Azab AS, ElTahir KE. Design and synthesis of novel 7-aminoquinazoline derivatives: antitumor and anticonvulsant activities. Bioorg Med Chem Lett. 2012;22:1879–85.

    Article  CAS  Google Scholar 

  17. Maurya HK, Verma R, Alam S, Pandey S, Pathak V, Sharma S, Gupta A. Studies on substituted benzo[h]quinazolines, benzo[g]indazoles, pyrazoles, 2,6-diarylpyridines as anti-tubercular agents. Bioorg Med Chem Lett. 2013;23:5844–9.

    Article  CAS  Google Scholar 

  18. Dukat M, Alix K, Worsham J, Khatri S, Schulte MK. 2-Amino-6-chloro-3,4-dihydroquinazoline: a novel 5-HT3 receptor antagonist with antidepressant character. Bioorg Med Chem Lett. 2013;23:5945–8.

    Article  CAS  Google Scholar 

  19. Akester JN, Njaria P, Nchinda A, Le Manach C, Myrick A, Singh V, Lawrence N, Njoroge M, Taylor D, Moosa A, Smith AJ. Synthesis, structure–activity relationship, and mechanistic studies of aminoquinazolinones displaying antimycobacterial activity. ACS Infect Dis. 2020;6:1951–64.

    Article  CAS  Google Scholar 

  20. Jafari E, Khajouei MR, Hassanzadeh F, Hakimelahi GH, Khodarahmi GA. Quinazolinone and quinazoline derivatives: recent structures with potent antimicrobial and cytotoxic activities. Res Pharm Sci. 2016;11:1–14.

    PubMed  PubMed Central  Google Scholar 

  21. Couturier C, Lai C, Pellet A, Upton A, Kaneko T, Perron C, Cogo E, Menegotto J, Bauer A, Scheiper B, Lagrange S, Bacque E. Identification and optimization of a new series of anti-tubercular quinazolinones. Bioorg Med Chem Lett. 2016;26:5290–9.

    Article  CAS  Google Scholar 

  22. Maddali NK, Viswanath IK, Murthy YLN, Bera R, Takhi M, Rao NS, Gudla V. Design, synthesis and molecular docking studies of quinazolin-4-ones linked to 1,2,3-triazol hybrids as Mycobacterium tuberculosis H37Rv inhibitors besides antimicrobial activity. Med Chem Res. 2019;28:559–70.

    Article  CAS  Google Scholar 

  23. Dutta A, Trivedi P, Kulashetra A, Kumar A, Chaturvedi V, Sarma D. Sustainable parts‐per‐million level catalysis with FeIII: one‐pot cascade synthesis of 2,3‐dihydroquinazolin‐4(1H)‐ones in water. Appl Organomet Chem. 2021;35:e6116.

    Article  CAS  Google Scholar 

  24. Balaraman K, Kesavan V. Efficient copper(II) acetate catalyzed homo- and heterocoupling of terminal alkynes at ambient conditions. Synthesis. 2010;20:3461–6.

    Google Scholar 

  25. McClachy JK. Susceptibility testing of mycobacteria. Lab Med. 1978;9:47–52.

    Article  Google Scholar 

Download references

Acknowledgements

DS is thankful to Department of Biotechnology, Ministry of Science and Technology, New Delhi, India for a research grant (BT/PR24684/NER/95/810/2017). AD thanks DBT, New Delhi for Research Fellowship. The financial assistance of UGC-SAP programme to the Department of Chemistry, Dibrugarh University is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinita Chaturvedi or Diganta Sarma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A., Trivedi, P., Gogoi, D. et al. Anti-TB evaluation of novel 2,3-dihydroquinazolin-4(1H)-ones and in silico studies of the active compounds. Med Chem Res 30, 1366–1376 (2021). https://doi.org/10.1007/s00044-021-02733-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02733-6

Keywords

Navigation