Skip to main content

Advertisement

Log in

Recent advances in chemical reactivity and biological activities of eugenol derivatives

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Eugenol (4-allyl-2-methoxyphenol) is a volatile phenolic bioactive compound derived from a natural resource. This compound has been identified in several aromatic plants, among which Syzygium aromaticum (L.) Merr. and L.M. Perry contains between 45 and 90% of eugenol in its essential oil compared to other natural sources. Eugenol has been studied over the years and has shown to display a wide range of biological activities as antifungal, antimicrobial, anti-inflammatory, antioxidant, analgesic, anticancer, and antiparasitic. It has been extensively used in cosmetics, in food processing industry, and also as a starting material for total synthesis of several natural products. The 4-allyl-2-methoxyphenol has a simple structure, which presents three active sites: hydroxyl, allylic, and aromatic groups. Thus, the chemistry of this natural component emphasizes its potential impact in the synthesis of novel drugs, compounds that can be useful for human resources. Therefore, the present article reviews the latest developments in the methodologies of synthesis, pharmacological properties, and further applications of eugenol derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Kfoury M, Fourmentin S, Auezova L, Greige-Gerges H. Effets des substituants de phénylpropènes sur la stabilité d’encapsulation dans les cyclodextrines. Leban Sci J. 2015;16:107–16.

    Google Scholar 

  2. Vogt T. Phenylpropanoid biosynthesis. Mol Plant. 2010;3:2–20. https://doi.org/10.1093/mp/ssp106.

    Article  CAS  PubMed  Google Scholar 

  3. Kaufman TS. The multiple faces of Eugenol. A versatile starting material and building block for organic and bio-organic synthesis and a convenient precursor toward bio-based fine chemicals. J Braz Chem Soc. 2015;26:1055–85. https://doi.org/10.5935/0103-5053.20150086.

    Article  CAS  Google Scholar 

  4. Barceloux DG. Medical toxicology of natural substances. Hoboken, NJ: Foods, Fungi, Medicinal Herbs, Plants and Venomous Animals; 2008.

    Book  Google Scholar 

  5. Guenette SA, Beaudry F, Marier JF, Vachon P. Pharmacokinetics and anesthetic activity of eugenol in male Sprague-Dawley rats. J Vet Pharm Ther. 2006;29:265–70. https://doi.org/10.1111/j.1365-2885.2006.00740.x.

    Article  CAS  Google Scholar 

  6. Daniel AN, Sartoretto SM, Schmidt G, Caparroz-Assef SM, Bersani-Amado CA, Cuman RKN. Anti-inflammatory and antinociceptive activities of eugenol essential oil in experimental animal models. Braz J Pharmacogn. 2009;19:212–7. https://doi.org/10.1590/S0102-695X2009000200006.

    Article  CAS  Google Scholar 

  7. Lahlou S, Figureueiredo AF, Magalhães PJC, Leal-Cardoso JH, Gloria PD. Cardiovascular effects of methyleugenol, a natural constituent of many plant essential oils, in normotensive rats. Life Sci. 2004;74:2401–12. https://doi.org/10.1016/j.lfs.2003.09.063.

    Article  CAS  PubMed  Google Scholar 

  8. Zheng GQ, Kenney PM, Lam LKT. Sesquiterpenes from clove (Eugenia caryophyllata) as potential anticarcinogenic agents. J Nat Prod. 1992;55:999–1003. https://doi.org/10.1021/np50085a029.

    Article  CAS  PubMed  Google Scholar 

  9. Hidalgo ME, De la Rosa C, Carrasco H, Cardona W, Gallardo C, Espinoza L. Antioxidant capacity of eugenol derivatives. Quim Nova. 2009;32:1467–70. https://doi.org/10.1590/S0100-40422009000600020.

    Article  CAS  Google Scholar 

  10. Machado M, Dinis AM, Salgueiro L, Custódio JBA, Cavaleiro C, Sousa MC. Anti-Giardia activity of Syzygium aromaticum essential oil and eugenol: effects on growth, viability, adherence and ultrastructure. Exp Parasitol. 2011;127:732–9. https://doi.org/10.1016/j.exppara.2011.01.011.

    Article  CAS  PubMed  Google Scholar 

  11. Pinto E, Vale-Silva L, Cavaleiro C, Salgueiro L. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and Dermatophyte species. J Med Microbiol. 2009;58:1454–62. https://doi.org/10.1099/jmm.0.010538-0.

    Article  PubMed  Google Scholar 

  12. Yadav MK, Chae SW, Im GJ, Chung JW, Song JJ. Eugenol: a phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS ONE. 2015;10:1–21. https://doi.org/10.1371/journal.pone.0119564.

    Article  CAS  Google Scholar 

  13. Wang C, Fan Y. Eugenol enhances the resistance of tomato against tomato yellow leaf curl virus. J Sci Food Agric. 2014;94:677–82. https://doi.org/10.1002/jsfa.6304.

    Article  CAS  PubMed  Google Scholar 

  14. Dos Santos T, Coelho C, Elias TC, Siqueira FS, Nora ESSD, De Campos MMA, et al. Synthesis and biological evaluation of new eugenol-derived 1,2,3-triazoles as antimycobacterial agents. J Braz Chem Soc. 2019;30:1425–36. https://doi.org/10.21577/0103-5053.20190038.

    Article  CAS  Google Scholar 

  15. Ginting M, Surbakti D, Triana N. Synthesis of 2-(4-Allyl-2-methoxy phenoxy)-N,N-Bis(2-hydroxyethyl) acetamide from the transformation of eugenol isolated from clove oil. J Chem Nat Resour. 2019;1:1–9.

    Google Scholar 

  16. Eyambe G, Canales L, Bimal KB. Antimicrobial activity of eugenol derivatives. 2011;11:10–14. https://doi.org/10.16194/j.cnki.31-1059/g4.2011.07.016.

  17. Da Silva FFM, Monte FJQ, De Lemos TLG, Do Nascimento PGG, Costa AKM, De Paiva LMM. Eugenol derivatives: synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chem Cent J. 2018;12:1–9. https://doi.org/10.1186/s13065-018-0407-4.

    Article  CAS  Google Scholar 

  18. Topal F, Gulcin I, Dastan A, Guney M. Novel eugenol derivatives: potent acetylcholinesterase and carbonic anhydrase inhibitors. Int J Biol Macromol. 2017;94:845–51. https://doi.org/10.1016/j.ijbiomac.2016.10.096.

    Article  CAS  PubMed  Google Scholar 

  19. Devkate SS, Burungale AS, Jadhav SD, Pise AS, Gawde RB. Synthesis of γ-lactones by nucleophilic addition of carboxylic acid enediolates to epoxides. J Emerg Technol Innov Res. 2019;6:738–42. https://doi.org/10.1729/Journal.19845.

    Article  Google Scholar 

  20. Melean LG, Rodriguez M, Romero M, Alvarado ML, Rosales M, Baricelli PJ. Biphasic hydroformylation of substituted allylbenzenes with water-soluble rhodium or ruthenium complexes. Appl Catal A Gen. 2011;394:117–23. https://doi.org/10.1016/j.apcata.2010.12.037.

    Article  CAS  Google Scholar 

  21. Lauro F, Cedillo D, Marcela R. Design and synthesis of a diaza-bicyclo-naphthalen-oxiranyl-methanone derivative. Theoretical analysis of their interaction with cytochrome P450-17A1. Chem Methodol. 2019;3:194–210. https://doi.org/10.22034/chemm.2018.147492.1083.

    Article  CAS  Google Scholar 

  22. Lenardão EJ, Jacob RG, Mesquita KD, Lara RG, Webber R, Martinez DM, et al. Glycerol as a promoting and recyclable medium for catalyst-free synthesis of linear thioethers: new antioxidants from eugenol. Green Chem Lett Rev. 2013;6:269–76. https://doi.org/10.1080/17518253.2013.811298.

    Article  CAS  Google Scholar 

  23. Farias AM, Oliveira PS, Dutra FSP, Fernandes TJ, De pereira CMP, De Oliveira SQ, et al. Eugenol derivatives as potential anti-oxidants: is phenolic hydroxyl necessary to obtain an effect? J Pharm Pharmacol. 2014;66:733–46. https://doi.org/10.1111/jphp.12197.

    Article  CAS  Google Scholar 

  24. Martins RM, Farias MDA, Nedel F, De Pereira CMP, Lencina C, Lund RG. Antimicrobial and cytotoxic evaluation of eugenol derivatives. Med Chem Res. 2016;25:2360–7. https://doi.org/10.1007/s00044-016-1682-z.

    Article  CAS  Google Scholar 

  25. Nurul HCAR, Asnuzilawati A, Noraznawati I, Hasnah O. Synthesis and antibacterial study of eugenol derivatives. Asian J Chem. 2017;29:22–6. https://doi.org/10.14233/ajchem.2017.20100.

    Article  CAS  Google Scholar 

  26. Ngadiwiyana I, Gunawan SPR, Prasetya NBA, Kusworo TD, Susanto H. One pot reaction to synthesize allyl etherified eugenol from clove oil. IOP Conf Ser Mater Sci Eng. 2019;509. https://doi.org/10.1088/1757-899X/509/1/012098.

  27. Bkhaitan MM, Alarjah M, Mirza AZ, Abdalla AN, El-Said HM, Faidah HS. Preparation and biological evaluation of metronidazole derivatives with monoterpenes and eugenol. Chem Biol Drug Des. 2018;92:1954–62. https://doi.org/10.1111/cbdd.13366.

    Article  CAS  PubMed  Google Scholar 

  28. Srivastava KC, Malhotra N. Acetyl eugenol, a component of oil of cloves (Syzygium aromaticum L.) inhibits aggregation and alters arachidonic acid metabolism in human blood platelets. Prostaglandins Leukot Essent Fat Acids. 1991;42:73–81. https://doi.org/10.1016/0952-3278(91)90070-L.

    Article  CAS  Google Scholar 

  29. De Almeida AL, Ferracioli CKR, De Scodro RB, Baldin VP, Montaholi DC, Spricigo LF, et al. Eugenol and derivatives activity against Mycobacterium tuberculosis, Nontuberculous mycobacteria and other bacteria. Future Microbiol. 2019;14:331–44. https://doi.org/10.2217/fmb-2018-0333.

    Article  CAS  PubMed  Google Scholar 

  30. Awasthi PK, Dixit SC, Dixit N, Sinha AK. Eugenol derivatives as future potential drugs. J Pharm Res. 2008;1:215–20.

    CAS  Google Scholar 

  31. Bansode TN. Green synthesis and antimicrobial activity of some eugenol derivatives. J Chem Pharm Res. 2017;9:145–7.

    CAS  Google Scholar 

  32. Bilgiçli HG, Kestane A, Taslimi P, Karabay O, Damoni AB, Zengin M, et al. Novel eugenol bearing oxypropanolamines: synthesis, characterization, antibacterial, antidiabetic, and anticholinergic potentials. Bioorg Chem. 2019;88:1–7. https://doi.org/10.1016/j.bioorg.2019.102931.

    Article  CAS  Google Scholar 

  33. Ahmad A, Wani MY, Khan A, Manzoor N, Molepo J. Synergistic interactions of eugenol-Tosylate and its congeners with fluconazole against Candida albicans. PLoS ONE. 2015;10:1–19. https://doi.org/10.1371/journal.pone.0145053.

    Article  CAS  Google Scholar 

  34. Elgendy EM, Khayyat SA. Oxidation reactions of some natural volatile aromatic compounds: anethole and eugenol. Russ J Org Chem. 2008;44:823–9. https://doi.org/10.1134/s1070428008060079.

    Article  CAS  Google Scholar 

  35. Maurya AK, Agarwal K, Gupta AC, Saxena A, Nooreen Z, Tandon S, et al. Synthesis of eugenol derivatives and its anti-inflammatory activity against skin inflammation. Nat Prod Res. 2018;0:1–10. https://doi.org/10.1080/14786419.2018.1528585.

    Article  CAS  Google Scholar 

  36. Carrasco H, Raimondi M, Svetaz L, Di Liberto M, Rodriguez VM, Espinoza L, et al. Antifungal activity of eugenol analogues. Influence of different substituents and studies on mechanism of action. Molecules. 2012;17:1002–24. https://doi.org/10.3390/molecules17011002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hipólito TMM, Bastos GTL, Barbosa TWL, De Souza TB, Coelho LFL, Dias ALT, et al. Synthesis, activity, and docking studies of eugenol-based glucosides as new agents against Candida sp. Chem Biol Drug Des. 2018;92:1514–24. https://doi.org/10.1111/cbdd.13318.

    Article  CAS  PubMed  Google Scholar 

  38. Sudarma IM, Wazni N, Wildawaty N, Yuanita E, Suana IW. An efficient method on nitration of eugenol using NH4NO3 and KHSO4. Asian J Chem. 2014;26:173–5. https://doi.org/10.14233/ajchem.2014.15367.

    Article  CAS  Google Scholar 

  39. Chen CH, Tung SH, Jeng RJ, Abu Omar MM, Lin CH. A facile strategy to achieve fully bio-based epoxy thermosets from eugenol. Green Chem. 2019;21:4475–88. https://doi.org/10.1039/c9gc01184f.

    Article  CAS  Google Scholar 

  40. Qin J, Liu H, Zhang P, Wolcott ZJ. Use of eugenol and rosin as feedstocks for biobased epoxy resins and study of curing and performance properties. Polym Int. 2013;63:760–5. https://doi.org/10.1002/pi.4588.

    Article  CAS  Google Scholar 

  41. Yadav RN, Banik KB. Studies on natural products: a facile epoxidation of eugenol. Mod Chem Appl. 2018;06:254–5. https://doi.org/10.4172/2329-6798.1000255.

    Article  CAS  Google Scholar 

  42. Hamri BS, Rhazri K, Hafid A, Ouchetto H, Hajbi Y. Clove (Eugenia Caryophyllata) extraction and synthesis of new pyrazole derivatives from eugenol. Glob J Sci Front Res Chem. 2013;13:1–6.

    Google Scholar 

  43. Sohilait HJ, Kainama H. Free radical scavenging activity of essential oil of Eugenia caryophyllata from amboina island and derivatives of eugenol. Open Chem. 2019;17:422–8. https://doi.org/10.1515/chem-2019-0047.

    Article  CAS  Google Scholar 

  44. Sudarma IM, Kusnandini A, Darmayanti MG. Chemical transformation of eugenol isolated from leaves of Syzygium aromaticum to its new isothiocyanate derivatives. J Nat Prod. 2015;8:27–32.

    Google Scholar 

  45. Kumar N, Yadav N, Amarnath N, Sharma V, Shukla S, Srivastava A, et al. Integrative natural medicine inspired graphene nanovehicle-benzoxazine derivatives as potent therapy for cancer. Mol Cell Biochem. 2019;454:123–38. https://doi.org/10.1007/s11010-018-3458-x.

    Article  CAS  PubMed  Google Scholar 

  46. Dongarwar AS, Wanjari BE, Nema MV, Khan MSY. Synthesis, anti-inflammatory and anti-microbial activity of some new 1-(3-phenyl-3,4-dihydro-2H-1,3-benzoxazin-6-yl) ethanone derivatives. Int J Biomed Adv Res. 2011;2:101–4. https://doi.org/10.7439/ijbar.v2i6.33.

    Article  Google Scholar 

  47. Hayawaka I, Hiramitsu T, Tanaka Y. Benzoxazine derivatives. US4382892. 1983 May 10.

  48. Gemma S, Camodeca C, Brindisi M, Brogi S, Kukreja G, Kunjir S, et al. Mimicking the intramolecular hydrogen bond: synthesis, biological evaluation, andmolecular modeling of benzoxazines and quinazolines as potential antimalarial agents. J Med Chem. 2012;55:10387–404. https://doi.org/10.1021/jm300831b.

    Article  CAS  PubMed  Google Scholar 

  49. Rudyanto M, Ekowati J, Widiandani T, Honda T. Synthesis and brine shrimp lethality test of some benzoxazine and aminomethyl derivatives of eugenol. Int J Pharm Pharm Sci. 2014;6:96–8.

    Google Scholar 

  50. Abrão PHO, Pizi RB, De Souza TB, Silva NC, Fregnan AM, Silva FN, et al. Synthesis and biological evaluation of new eugenol Mannich bases as promising antifungal agents. Chem Biol Drug Des. 2015;86:459–65. https://doi.org/10.1111/cbdd.12504.

    Article  CAS  PubMed  Google Scholar 

  51. Coelho CM, Dos Santos T, Freitas PG, Nunes JB, Marques MJ, Padovani CGD, et al. Design, synthesis, biological evaluation and molecular modeling studies of novel eugenol esters as leishmanicidal agents. J Braz Chem Soc. 2018;29:715–28. https://doi.org/10.21577/0103-5053.20170192.

    Article  CAS  Google Scholar 

  52. De Souza TB, Orlandi M, Coelho LFL, Malaquias LCC, Dias ALT, De Carvalho RR, et al. Synthesis and in vitro evaluation of antifungal and cytotoxic activities of eugenol glycosides. Med Chem Res. 2014;23:496–502. https://doi.org/10.1007/s00044-013-0669-2.

    Article  CAS  Google Scholar 

  53. De Souza TB, De Oliveira BKM, Silva NC, Rocha RP, De Sousa GF, Duarte LP, et al. New eugenol glucoside-based derivative shows fungistatic and fungicidal activity against opportunistic Candida glabrata. Chem Biol Drug Des. 2016;87:83–90. https://doi.org/10.1111/cbdd.12625.

    Article  CAS  PubMed  Google Scholar 

  54. Prasetya NBA, Ngadiwiyana I, Sarjono PR. Synthesis and study of antibacterial activity of polyeugenol. IOP Conf Ser Mater Sci Eng. 2019;509. https://doi.org/10.1088/1757-899X/509/1/012101.

  55. Prasetya NBA, Ngadiwiyana I, Sarjono PR. Synthesis of copolymer eugenol crosslinked with divinyl benzene and preliminary study on its antibacterial activity. IOP Conf Ser Mater Sci Eng. 2019;509. https://doi.org/10.1088/1757-899X/509/1/012102.

  56. Rahim EA, Sanda F. Synthesis and functionality of eugenol-based polyacetylenes. J Phys Conf Ser. 2019;1242. https://doi.org/10.1088/1742-6596/1242/1/012003.

  57. Rojo L, Vasquez B, Parra J, Bravo AL, Deb S, Roman JS. From natural products to polymeric derivatives of “eugenol”: a new approach for preparation of dental composites and orthopedic bone cements. Biomacromolecules. 2006;7:2751–61. https://doi.org/10.1021/bm0603241.

    Article  CAS  PubMed  Google Scholar 

  58. Liu K, Madbouly SA, Kessler MR. Biorenewable thermosetting copolymer based on soybean oil and eugenol. Eur Polym J. 2015;69:16–28. https://doi.org/10.1016/j.eurpolymj.2015.05.021.

    Article  CAS  Google Scholar 

  59. Yupeing L, Luo F, Cheng C. Preparation of eugenol-based polyurethane. IOP Conf Ser Mater Sci Eng. 2018;322:5–9. https://doi.org/10.1088/1757-899X/322/2/022030.

    Article  Google Scholar 

Download references

Funding

Financial support from University Hassan II of Casablanca is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

MD: writing original draft and visualization; AA: writing review; AE: analysis and interpretation of data; AEA: methodology and investigation, JJ: reviewed the final paper.

Corresponding author

Correspondence to M. Dakir.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to publish

All authors are agreeing for publishing in your journal. We confirm that the paper has been read and approved and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the paper has been approved.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdou, A., Elmakssoudi, A., El Amrani, A. et al. Recent advances in chemical reactivity and biological activities of eugenol derivatives. Med Chem Res 30, 1011–1030 (2021). https://doi.org/10.1007/s00044-021-02712-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02712-x

Keywords

Navigation