Skip to main content

Advertisement

Log in

Synthesis, characterization, crystal structures, and anticancer activity of some new 2,3-dihydro-1,5-benzoxazepines

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Various benzoxazepine derivatives have been synthesized and characterized using IR, NMR, GC–MS, and microanalysis. The single-crystal X-ray structures of 2,2-dimethyl-4-[(E)-2-(4-methylphenyl)ethenyl]-2,3-dihydro-1,5-benzoxazepine (RS01), 4-[(E)-2-(2-chlorophenyl)ethenyl] -2,2-dimethyl-2,3-dihydro-1,5-benzoxazepine (RS05), 2,2,4-trimethyl-2,3-dihydrobenzothiazepine (RS11), and 2,2,4-trimethyl-2,3-dihydrobenzoxazepine (RS12) have been discussed. The compounds have been evaluated for their anticancer properties in breast cancer cells. 4-[(E)-2-(2-Chlorophenyl)ethenyl]-2,2-dimethyl-2,3-dihydro-1,5-benzoxazepine (RS03) and RS12 displayed potent cytotoxicity in both benign (MCF-7) and metastatic (MDA-MB-231) breast cancer cells. These compounds were more selective for the MCF-7 cells with RS03 being the most potent compound (IC50 = 15 µM) of the series. Upon further investigation, it was found that RS03 and RS12 induced cell cycle arrest in the G2/M phase and display limited toxicity against the noncancerous breast cell line, MCF-10A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hudson C, Murthy VS, Estep KG, Gustafson G. Microwave-assisted three component one-pot synthesis of pyrimido-oxazepines. Tetrahedron Lett. 2007;48:1489–92.

    Article  CAS  Google Scholar 

  2. Imramovskỳ A, Vinsǒvá J, Férriz JM, Kuneš J, Pour M, Dolezăl M. Salicylanilide esterification: unexpected formation of novel seven-membered rings. Tetrahedron Lett. 2006;47:5007–11.

    Article  Google Scholar 

  3. Parrino B, Ciancimino C, Carbone A, Spanó V, Montalbano A, Barraja P, et al. Synthesis of isoindolo [1,4] benzoxazinone and isoindolo[1,5] benzoxazepine: two new ring systems of pharmaceutical interest. Tetrahedron. 2015;71:7332–8.

    Article  CAS  Google Scholar 

  4. Willand N, Beghyn T, Nowogrocki G, Gesquiere JC, Deprez B. Synthesis and structural studies of a novel scaffold for drug discovery: a 4,5-dihydro-3Hspiro[1,5-benzoxazepine-2,40-piperidine]. Tetrahedron Lett. 2004;45:1051–4.

    Article  CAS  Google Scholar 

  5. Chandrasekhar S, Seenaiah M, Kumar A, Reddy CR, Mamidyala SK, Kumar CG, et al. Intramolecular copper(I)-catalyzed 1,3-dipolar cycloaddition of azido-alkynes: synthesis of triazolo-benzoxazepine derivatives and their biological evaluation. Tetrahedron Lett. 2011;52:806–8.

    Article  CAS  Google Scholar 

  6. Alaqeel SI. Synthetic approaches to benzimidazoles from o-phenylenediamine: a literature review. J Saudi Chem Soc. 2017;21:229–37.

    Article  CAS  Google Scholar 

  7. Karami C, Ghodrati K, Izadi M, Farrokh A, Jafari S, Mahmoudiyani M, et al. A fast procedure for the preparation of benzimidazole derivatives using polymer-supported with trifluoromethanesulfonic acid as novel and reusable catalyst. J Chil. Chem Soc. 2013;58:1914–7.

    Article  CAS  Google Scholar 

  8. Prashant KN, Kumar KR. Green synthesis of benzimidazole derivatives: an overview of bulk drug synthesis. Int J Pharmtech Res. 2015;8:60–68.

    Google Scholar 

  9. Thakuria H, Das G. An expeditious one-pot solvent-free synthesis of benzimidazole derivatives. ARKIVOC 2008;(xv):321–8

  10. Yadav S, Narasimhan B, Kaur H. Perspectives of benzimidazole derivatives as anticancer agents in the new era. Anticancer Agents Med Chem. 2016;16:1403–25.

    Article  CAS  Google Scholar 

  11. Irfan A, Batool F, Naqvi SAZ, Islam A, Osman SM, Nocentini A, et al. Benzothiazole derivatives as anticancer agents. J Enzyme Inhib Med Chem. 2019;35:265–79.

    Article  Google Scholar 

  12. Caputo R, Calabrò ML, Micale N, Schimmer AD, Ali M, Zappalà M, et al. Synthesis of benzothiazole derivatives and their biological evaluation as anticancer agents. Med Chem Res. 2012;21:2644–51.

    Article  CAS  Google Scholar 

  13. Khaleghi F, Bin L, Din I, Jantan I, Yaacob WA, Khalilzadeh MA. A facile synthesis of novel 1,4-benzoxazepin-2-one derivatives. Tetrahedron Lett. 2011;52:7182–4.

    Article  CAS  Google Scholar 

  14. Ghandi M, Momeni T, Nazeri MT, Zarezadeh N, Kubicki M. A one-pot three-component reaction providing tricyclic 1,4-benzoxazepine derivatives. Tetrahedron Lett. 2013;54:2983–5.

    Article  CAS  Google Scholar 

  15. Shaabani A, Hooshmand SE, Nazeri MT, Afshari R, Ghasemi S. Deep eutectic solvent as a highly efficient reaction media for the one-pot synthesis of benzo-fused seven-membered heterocycles. Tetrahedron Lett. 2016;57:3727–30.

    Article  CAS  Google Scholar 

  16. Odame F, Kleyi P, Hosten E, Betz R, Lobb KA, Tshentu Z. The formation of 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazepine from 1,2-diaminobenzene in the presence of acetone. Molecules. 2013;18:14293–305.

    Article  Google Scholar 

  17. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2019;69:7–34.

    Article  Google Scholar 

  18. Samanta K, Chakravarti B, Mishra JK, Dwivedi SKD, Nayak LV, Choudhry P, et al. Anti-tumor activity of a new series of benzoxazepine derivatives in breast cancer. Bioorg Med Chem Lett. 2010;20:283–7.

    Article  CAS  Google Scholar 

  19. Banerji B, Pramanik SK, Sanphui P, Nikhar S, Biswas SC. Synthesis and cytotoxicity studies of novel triazolo-benzoxazepine as new anticancer agents. Chem Biol Drug Des. 2013;82:401–9.

    Article  CAS  Google Scholar 

  20. Wilson JE, Kurukulasuriya R, Sinz C, Lombardo M, Bender K, Parker D, et al. Discovery and development of benzo-[1,2,4]-triazolo-[1,4]-oxazepine GPR142 agonists for the treatment of diabetes. Bioorg Med Chem Lett. 2016;26:2947–51.

    Article  CAS  Google Scholar 

  21. Garg N, Chandra T, Archana ABJ, Kumar A. Synthesis and evaluation of some new substituted benzothiazepine and benzoxazepine derivatives as anticonvulsant agents. Eur J Med Chem. 2010;45:1529–35.

    Article  CAS  Google Scholar 

  22. Kaur H, Kumar S, Chaudhary A, Kumar A. Synthesis and biological evaluation of some new substituted benzoxazepine and benzothiazepine as antipsychotic as well as anticonvulsant agents. Arab J Chem. 2012;5:271–83.

    Article  CAS  Google Scholar 

  23. APEX2, SADABS and SAINT. Bruker AXS Inc: Madison, WI, USA; 2010.

  24. Sheldrick GM. SHELXT–Integrated space-group and crystal-structure determination. Acta Cryst. 2015A;A71:3–8.

    Google Scholar 

  25. Sheldrick GM. Crystal structure refinement with SHELXL. Acta. Cryst. 2015B;C71:3–8.

    Google Scholar 

  26. Hübschle CB, Sheldrick GM, Dittrich B. ShelXle: a Qt graphical user interface for SHELXL. J Appl Cryst. 2011;44:1281–4.

    Article  Google Scholar 

  27. Bradforth SE, Kim EH, Arnold DW, Neumark DM. Photoelectron spectroscopy of CN-, NCO-, and NCS. J Chem Phys. 1993;98:800–10.

    Article  CAS  Google Scholar 

  28. Chetioui S, Hamdouni N, Bochet CG, Djukic JP, Bailly C. Crystal structure of bis{l-1-[(E)-(3-methoxyphenyl)diazenyl]naphthalen-2-olatoj3N2,O:O}bis({1-[(E)-(3-methoxyphenyl)diazenyl]naphthalen-2-olatoj2 N2, O}copper(II)). Acta Cryst. 2015;E71:m211–2.

    Google Scholar 

  29. Destro R, Merati F. Bond Lengths, and Beyond. Acta Cryst. 1995;B51:559–70.

    Article  CAS  Google Scholar 

  30. Greene LM, Butini S, Campiani G, Williams DC, Zisterer DM. Pre-clinical evaluation of a novel class of anti-cancer agents, the Pyrrolo-1, 5-benzoxazepines. J Cancer. 2016;7:2367–77.

    Article  CAS  Google Scholar 

  31. Mulligan JM, Greene LM, Cloonan SM, Mc Gee MM, Onnis V, Campiani G, et al. Identification of tubulin as the molecular target of pro-apoptotic pyrrolo-1, 5-benzoxazepines. Mol Pharmacol. 2006;70:60–70.

    Article  CAS  Google Scholar 

  32. Nathwani SM, Cloonan SM, Stronach M, Campiani G, Lawler M, Williams DC, et al. microtubule-targeting agents, pyrrolo-1,5-benzoxazepines, induce cell cycle arrest and apoptosis in prostate cancer cells. Oncol Rep. 2010;24:1499–507.

    Article  CAS  Google Scholar 

  33. Pines J, Hunter T. Isolation of a human cyclin cDNA: Evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell. 1989;58:833–46.

    Article  CAS  Google Scholar 

  34. Hasanpourghadi M, Pandurangan AK, Karthikeyan C, Trivedi P, Mustafa MR. Mechanisms of the anti-tumor activity of Methyl 2-(-5-fluoro-2-hydroxyphenyl)-1 H-benzo[d]imidazole-5-carboxylate against breast cancer in vitro and in vivo. Oncotarget. 2017;8:28840–53.

    Article  Google Scholar 

  35. Li S, Wang L, Meng Y, Chang Y, Xu J, Zhang Q. Increased levels of LAPTM4B, VEGF and survivin are correlated with tumor progression and poor prognosis in breast cancer patients. Oncotarget. 2017;8:41282–93.

    Article  Google Scholar 

  36. Garg H, Suri P, Gupta JC, Talwar G, Dubey S. Survivin: a unique target for tumor therapy. Cancer Cell Int. 2016;16:49.

    Article  Google Scholar 

  37. Mirza A, McGuirk M, Hockenberry TN, Wu Q, Ashar H, Black S, et al. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene. 2002;21:2613–22.

    Article  CAS  Google Scholar 

  38. Hui L, Zheng Y, Yan Y, Bargonetti J, Foster D. Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene. 2006;25:7305–10.

    Article  CAS  Google Scholar 

  39. Azarenko O, Smiyun G, Mah J, Wilson L, Jordan MA. Antiproliferative mechanism of action of the novel taxane cabazitaxel as compared with the parent compound docetaxel in MCF7 breast cancer cells. Mol Cancer Therap. 2014;13:2092–103

  40. Wang TH, Wang HS, Ichijo H, Giannakakou P, Foster JS, Fojo T, et al. Microtubule-interfering agents activate c-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. J Biol Chem. 1998;273:4928–2936.

    Article  CAS  Google Scholar 

  41. Allan LA, Clarke PR. Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol Cell. 2007;26:301–10.

    Article  CAS  Google Scholar 

  42. Matthess Y, Raab M, Sanhaji M, Lavrik IN, Strebhardt K. Cdk1/cyclin B1 controls Fas-mediated apoptosis by regulating caspase-8 activity. Mol Cell Biol. 2010;30:5726–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F. Odame thanks the National Research Foundation for awarding him a Postdoctoral Fellowship. R. Schoeman would like to acknowledge Nelson Mandela University and National Research Foundation for the MSc Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Odame.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odame, F., Schoeman, R., Krause, J. et al. Synthesis, characterization, crystal structures, and anticancer activity of some new 2,3-dihydro-1,5-benzoxazepines. Med Chem Res 30, 987–1004 (2021). https://doi.org/10.1007/s00044-021-02706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02706-9

Keywords

Navigation