Skip to main content

Advertisement

Log in

Isonicotinoyl hydrazones of pyridoxine derivatives: synthesis and antimycobacterial activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of novel isonicotinoyl hydrazones based on pyridoxine (vitamin B6) were synthesized. The synthesized compounds were evaluated for their antimycobacterial activity on M. tuberculosis H37Rv strain. The most potent compound 13 showed good activity on H37Rv strain and on clinical isolates of M. tuberculosis with multidrug-resistant tuberculosis (TB) profile included first- and second-line drugs. Cytotoxicity studies of compound 13 on human embryonic kidney cells, human liver, human mesenchymal stem cells, and human embryonic lung cells in vitro demonstrated it is 2–3 times less toxicity then isoniazid and 1.5–2 less toxicity than ethambutol and moxifloxacin. Compound 13 showed weak complexation with Fe3+ ions, low acute toxicity (LD50 > 2000 mg/kg per os on mice) and the identical to isoniazid and significantly better than ethambutol and moxifloxacin efficacious in the mouse model of drug-sensitive (H37Rv) TB. These facts make him a promising candidate for future developments of antitubercular drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO. Global TB Report 2019. https://www.who.int/tb/publications/global_report/en/. Accessed 17 Oct 2019.

  2. Gegia M, Winters N, Benedetti A, Van Soolingen D, Menzies D. Treatment of isoniazid-resistant tuberculosis with first-line drugs: a systematic review and meta-analysis. Lancet Infect Dis. 2017;17:223–34.

    Article  CAS  PubMed  Google Scholar 

  3. Huyen MNT, Cobelens FGJ, Buu TN, Lan NTN, Dung NH, Kremer K, et al. Epidemiology of isoniazid resistance mutations and their effect on tuberculosis treatment outcomes. Antimicrob Agents Chemother. 2013;57:3620–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burmistrova IA, Samoylova AG, Tyulkova TE, Vaniev EV, Balasanyants GS, Vasilyeva IA. Drug resistance of M. tuberculosis (historical aspects, current level of knowledge). Tuberc Lung Dis. 2020;98:54–61. (In Russ.)

    Article  Google Scholar 

  5. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, Soolingen van D, et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet. 2010;375:1830–43.

    Article  PubMed  Google Scholar 

  6. Weber WW, Hein DW. Clinical pharmacokinetics of isoniazid. Clin Pharmacokinet. 1979;4:401–22.

    Article  CAS  PubMed  Google Scholar 

  7. Erwin ER, Addison AP, John SF, Olaleye OA, Rosell RC. Pharmacokinetics of isoniazid: the good, the bad, and the alternatives. Tuberculosis. 2019;116:66–70.

    Article  Google Scholar 

  8. Mafukidze AT, Calnan M, Furin J. Peripheral neuropathy in persons with tuberculosis. J Clin Tuberc Other Mycobact Dis. 2016;2:5–11.

    Article  PubMed  Google Scholar 

  9. Van der Watt JJ, Harrison TB, Benatar M, Heckmann JM. Polyneuropathy, anti-tuberculosis treatment and the role of pyridoxine in the HIV/AIDS era: a systematic review. Int J Tuberc Lung Dis. 2011;15:722–8.

    Article  PubMed  Google Scholar 

  10. Wang P, Pradhan K, Zhong X, Ma X. Isoniazid metabolism and hepatotoxicity. Acta Pharm Sin B. 2016;6:384–92.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hoagland DT, Liu J, Lee RB, Lee RE. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv Drug Deliv Rev. 2016;102:55–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bahuguna A, Rawat DS. An overview of new antitubercular drugs, drug candidates, and their targets. Med Res Rev. 2020;40:263–92.

    Article  PubMed  Google Scholar 

  13. Hu YQ, Zhang S, Zhao F, Gao C, Feng LS, Lv ZS, et al. Isoniazid derivatives and their anti-tubercular activity. Eur J Med Chem. 2017;133:255–67.

    Article  CAS  PubMed  Google Scholar 

  14. Vinsova J, Imramovsky A, Jampilek J, Monreal JF, Dolezal M. Recent advances on isoniazide derivatives. Antiinfect Agents. 2008;7:12–31.

    CAS  Google Scholar 

  15. Asif M. Pharmacologically potentials of hydrazonone containing compounds: a promising scaffold. Int J Adv Chem. 2014;2:85–103.

    Article  Google Scholar 

  16. Lees-Gayed NJ, Abou-Taleb MA, El-Bitash IA, Iskander MF. Studies on biologically active acylhydrazones. Part 1. Acid–base equilibria and acid hydrolysis of pyridoxal aroylhydrazones and related compounds. J Chem Soc Perkin Trans. 1992;2 2:213–7.

    Article  Google Scholar 

  17. Mori G, Chiarelli LR, Riccardi G, Pasca MR. New prodrugs against tuberculosis. Drug Discov Today. 2017;22:519–25.

    Article  CAS  PubMed  Google Scholar 

  18. Scior T, Garcés-Eisele SJ. Isoniazid is not a lead compound for its pyridyl ring derivatives, isonicotinoyl amides, hydrazides, and hydrazones: a critical review. Curr Med Chem. 2006;13:2205–19.

    Article  CAS  PubMed  Google Scholar 

  19. Buss JL, Ponka P. Hydrolysis of pyridoxal isonicotinoyl hydrazone and its analogs. Biochim Biophys Acta. 2003;1619:177–86.

    Article  CAS  PubMed  Google Scholar 

  20. Mashkovsky MD. Lekarstvennye sredstva. 16th ed. Moscow: Novaya volna; 2014.

    Google Scholar 

  21. Fernandes GFS, de Souza PC, Moreno-Viguri E, Santivañez-Veliz M, Paucar R, Pérez-Silanes S, et al. Design, synthesis, and characterization of N-oxide-containing heterocycles with in vivo sterilizing antitubercular activity. J Med Chem. 2017;60:8647–60.

    Article  Google Scholar 

  22. John SF, Aniemeke E, Ha NP, Chong CR, Gu P, Zhou J, et al. Characterization of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone as a novel inhibitor of methionine aminopeptidases from Mycobacterium tuberculosis. Tuberculosis. 2016;101:73–7.

    Article  Google Scholar 

  23. Manjashetty TH, Yogeeswari P, Sriram D. Microwave assisted one-pot synthesis of highly potent novel isoniazid analogues. Bioorg Med Chem Lett. 2011;21:2125–8.

    Article  CAS  PubMed  Google Scholar 

  24. Oliveira PFM, Guidetti B, Chamayou A, André-Barrès C, Madacki J, Korduláková J, et al. Mechanochemical synthesis and biological evaluation of novel isoniazid derivatives with potent antitubercular activity. Molecules. 2017;22:1457–84.

    Article  PubMed Central  Google Scholar 

  25. Papageorgiou A, Foscolos A-S, Papanastasiou IP, Vlachou M, Siamidi A, Vocat A, et al. Synthesis, biology, computational studies and in vitro controlled release of new isoniazid-based adamantane derivatives. Future Med Chem. 2019;11:2779–802.

    Article  CAS  Google Scholar 

  26. Pedro E, Silva AD, Ramosa DF, Bonacorso HG, Iglesia AI, Oliveira MR, et al. Synthesis and in vitro antimycobacterial activity of 3-substituted 5-hydroxy-5-trifluoro[chloro]methyl-4,5-dihydro-1H-1-(isonicotinoyl) pyrazoles. Int J Antimicrob Agents. 2008;32:139–44.

    Article  Google Scholar 

  27. Sah PPT. Nicotinyl and isonicotinyl hydrazones of pyridoxal. J Am Chem Soc. 1954;76:300.

    Article  CAS  Google Scholar 

  28. Parra M, Stahl S, Hellmann H. Vitamin B6 and its role in cell metabolism and physiology. Cells. 2018;7:84–112.

    Article  PubMed Central  Google Scholar 

  29. Dick T, Manjunatha U, Kappes B, Gengenbacher M. Vitamin B6 biosynthesis is essential for survival and virulence of Mycobacterium tuberculosis. Mol Microbiol. 2010;78:980–8.

    Article  CAS  PubMed  Google Scholar 

  30. Ankisettypalli K, Cheng JJ-Y, Baker EN, Bashiri G. PdxH proteins of mycobacteria are typical members of the classical pyridoxine/pyridoxamine 5′-phosphate oxidase family. FEBS Lett. 2016;590:453–60.

    Article  CAS  PubMed  Google Scholar 

  31. Brittenham GM. Pyridoxal isonicotinoyl hydrazone. Effective iron-chelator after oral administration. Semin Hematol. 1990;27:112–6.

    CAS  PubMed  Google Scholar 

  32. Richardson DR, Tran EH, Ponka P. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. Blood. 1995;86:4295–306.

    Article  CAS  PubMed  Google Scholar 

  33. Ellis S, Kalinowski DS, Leotta L, Huang MLH, Jelfs P, Sintchenko V, et al. Potent ANtimycobacterial Activity of the Pyridoxal Isonicotinoyl Hydrazone analog 2-pyridylcarboxaldehyde isonicotinoyl hydrazone: a lipophilic transport vehicle for isonicotinic acid hydrazide. Mol Pharmacol. 2014;85:269–78.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann HJ. OLEX2: a complete structure solution, refinement and analysis program. Appl Cryst. 2009;42:339–41.

    Article  CAS  Google Scholar 

  35. Sheldrick GM. SHELXT: integrating space group determination and structure solution. Acta Crystallogr. 2015;71:3–8.

    Google Scholar 

  36. Sheldrick GM. A short history of SHELX. Acta Crystallogr. 2007;64:112–22.

    Article  Google Scholar 

  37. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, et al. Visualization and analysis of crystal structures. J Appl Crystallogr. 2006;39:453–7.

    Article  CAS  Google Scholar 

  38. Agrawal KC, Clayan S, Sartorelli AC. Synthesis of site-directed chelating agents II: 2-Formyl-3-hydroxy-4,5-bis(hydroxymethyl)pyridine thiosemicarbazone. J Pharm Sci. 1976;65:297–300.

    Article  CAS  PubMed  Google Scholar 

  39. Khaziev R, Shtyrlin N, Pavelyev R, Nigmatullin R, Gabbasova R, Grishaev D, et al. Synthesis and antimicrobial activity of adamantyl substituted pyridoxine derivatives. Lett Drug Des Discov. 2019;16:1360–9.

    Article  CAS  Google Scholar 

  40. Morisawa Y, Kataoka M, Watanabe T, Kitano N, Matsuzawa T. Modification at the 5-position of 4-deoxypyridoxol and α4-norpyridoxol. Agr Biol Chem. 1975;39:1275–81.

    CAS  Google Scholar 

  41. Sattsanagnid PD, Argoude CJ. Synthesis of a pyridoxal analog. 4,5-Diformyl-3-hydroxy-2-methylpyridine. J Org Chem. 1968;33:1337–41.

    Article  Google Scholar 

  42. Shtyrlin NV, Lodochnikova OA, Shtyrlin YG. Regioisomeric oximes and thiosemicarbazones derived from 6-substituted pyridoxines. Mendeleev Commun. 2012;22:169–70.

    Article  CAS  Google Scholar 

  43. Shtyrlin NV, Strel’nik AD, Sysoeva LP, Lodochnikova OA, Klimovitskii EN, Shtyrlin YG. New synthetic method for 2,3,4-Tris(hydroxymethyl)-6-methylpyridin-5-ol. Russ J Org Chem. 2009;45:1266–8.

    Article  CAS  Google Scholar 

  44. Romero EL, D’Vries RF, Zuluaga F, Chaur MN. Multiple dynamics of hydrazone based compounds. J Braz Chem Soc. 2015;26:1265–73.

    CAS  Google Scholar 

  45. Chaur MN. Aroylhydrazones as potential systems for information storage: photoisomerization and metal complexation. Rev Colomb Quím. 2012;41:349–58.

    Google Scholar 

  46. Krutikov AA, Shtyrlin VG, Spiridonov AO, Serov NY, Il’yin AN, Bukharo MS, et al. New program for computation of the thermodynamic, spectral, and NMR relaxation parameters of coordination compounds in complex systems. J Phys Conf Ser. 2012;394:1–7.

    Article  Google Scholar 

  47. Shtyrlin VG, Gilyazetdinov EM, Serov NY, Pyreu DF, Bukharov MS, Krutikov AA, et al. Stability, lability, spectral parameters and structure of complexes and stereoselective effects in the nickel(II)-l/d/dl-histidine-l/d/dl-methionine systems. Inorg Chim Acta. 2018;477:135–47.

    Article  CAS  Google Scholar 

  48. Brennan PJ, Young DB. Isoniazid. Tuberculosis. 2008;88:112–6.

    Article  Google Scholar 

  49. Krasavin M, Lukin A, Vedekhina T, Manicheva O, Dogonadze M, Vinogradova T, et al. Attachment of a 5-nitrofuroyl moiety to spirocyclic piperidines produces non-toxic nitrofurans that are efficacious in vitro against multidrug-resistant Mycobacterium tuberculosis. Eur J Med Chem. 2019;166:125–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Project Grant 18-73-00169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii G. Shtyrlin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtyrlin, N.V., Khaziev, R.M., Shtyrlin, V.G. et al. Isonicotinoyl hydrazones of pyridoxine derivatives: synthesis and antimycobacterial activity. Med Chem Res 30, 952–963 (2021). https://doi.org/10.1007/s00044-021-02705-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02705-w

Keywords

Navigation