Skip to main content
Log in

Pentacyclic triterpene acid conjugated with mitochondria-targeting cation F16: Synthesis and evaluation of cytotoxic activities

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The first representatives of F16-conjugated pentacyclic triterpenoids, betulin and betulinic, ursolic, oleanolic, and glycyrrhetic acid derivatives, were synthesized. The triterpene core was linked, at the С-3, С-28, or С-30 position, to one or two mitochondria-targeting delocalized lipophilic cations F16 via butane or triethylene glycol spacer. The human cancer cell lines U937 (leukemic monocyte lymphoma), K562 (chronic myeloid leukemia), and Jurkat (T-lymphoblastic leukemia), and a human nonmalignant fibroblast cell line were used to evaluate the cytotoxic activities of the products. Most of the obtained conjugates showed considerable enhancement of the antitumor action in comparison with the parent betulinic acid (≈100−200-fold) and a markedly higher cytotoxic effect against tumor cell lines over healthy fibroblast cells. In the series of test compounds, F16 conjugates with betulin and betulinic acid 6, 8, and 11 were most selective, showing acceptable values of selectivity index (≥10).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Smith RA, Hartley RC, Cochemé HM, Murphy MP. Mitochondrial pharmacology. Trends Pharmacol Sci. 2012;33:341–52.

    Article  CAS  Google Scholar 

  2. Tatarkova Z, Kuka S, Petráš M, Račay P, Lehotský J, Dobrota D, et al. Why mitochondria are excellent targets for cancer therapy. Klin Onkol. 2012;25:421–6.

    CAS  PubMed  Google Scholar 

  3. Gogvadze V. Targeting mitochondria in fighting cancer. Curr Pharm Des. 2011;17:4034–46.

    Article  CAS  Google Scholar 

  4. Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria in cancer cells: what is so special about them? Trends Cell Biol. 2008;18:165–73.

    Article  CAS  Google Scholar 

  5. Modica-Napolitano JS, Aprille JR. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev. 2001;49:63–70.

    Article  CAS  Google Scholar 

  6. Pathania D, Millard M, Neamati N. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria. Adv Drug Deliv Rev. 2009;61:1250–75.

    Article  CAS  Google Scholar 

  7. Wang F, Ogasawara MA, Huang P. Small mitochondria-targeting molecules as anti-cancer agents. Mol Aspects Med. 2010;31:75–92.

    Article  CAS  Google Scholar 

  8. Reddy CA, Somepalli V, Golakoti T, Kanugula AK, Karnewar S, Rajendiran K, et al. Mitochondrial-targeted curcuminoids: a strategy to enhance bioavailability and anticancer efficacy of curcumin. PLOS ONE. 2014;9:e89351.

    Article  Google Scholar 

  9. Strobykina IY, Belenok MG, Semenova MN, Semenov VV, Babaev VM, Rizvanov IK, et al. Triphenylphosphonium cations of the diterpenoid isosteviol: synthesis and antimitotic activity in a sea urchin embryo model. J Nat Prod. 2015;78:1300–8.

    Article  CAS  Google Scholar 

  10. Tsepaeva OV, Nemtarev AV, Abdullin TI, Grigor’eva LR, Kuznetsova EV, Akhmadishina RA, et al. Design, synthesis, and cancer cell growth inhibitory activity of triphenylphosphonium derivatives of the triterpenoid betulin. J Nat Prod. 2017;80:2232–9.

    Article  CAS  Google Scholar 

  11. Ye Y, Zhang T, Yuan H, Li D, Lou H, Fan P. Mitochondria-targeted lupane triterpenoid derivatives and their selective apoptosis-inducing anticancer mechanisms. J Med Chem. 2017;60:6353–6363.

    Article  CAS  Google Scholar 

  12. Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, et al. Mitochondria targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev. 2017;117:10043–120.

    Article  CAS  Google Scholar 

  13. Hussain H, Green IR, Ali I, Khan IA, Ali Z, Al-Sadi AM, et al. Ursolic acid derivatives for pharmaceutical use: a patent review (2012–2016). Expert Opin Ther Pat. 2017;27:1061–72.

    Article  CAS  Google Scholar 

  14. Kessler JH, Mullauer FB, Roo GM, Medema JP. Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types. Cancer Lett. 2007;251:132–45.

    Article  CAS  Google Scholar 

  15. Lin C, Wen X, Sun H. Oleanolic acid derivatives for pharmaceutical use: a patent review. Expert Opin Ther Pat. 2016;26:643–55.

    Article  Google Scholar 

  16. Mullauer FB, Kessler JH, Medema JP. Betulinic acid, a natural compound with potent anti-cancer effects. Anticancer Drugs. 2010;21:215–27.

    Article  CAS  Google Scholar 

  17. Pathak AK, Bhutani M, Nair AS, Ahn KS, Chakraborty A, Kadara H, et al. Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Clin Cancer Res. 2007;5:943–55.

    CAS  Google Scholar 

  18. Csuk R. Betulinic acid and its derivatives: a patent review (2008–2013). Expert Opin Ther Pat. 2014;24:913–23.

    Article  CAS  Google Scholar 

  19. Zhang X, Hu J, Chen Y. Betulinic acid and the pharmacological effects of tumor suppression (Review). Mol Med Rep. 2016;14:4489–95.

    Article  CAS  Google Scholar 

  20. Fulda S, Kroemer G. Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov Today. 2009;14:885–90.

    Article  CAS  Google Scholar 

  21. Fulda S, Kroemer G. Mitochondria as therapeutic targets for the treatment of malignant disease. Antioxid Redox Signal. 2011;15:2937–49.

    Article  CAS  Google Scholar 

  22. Nedopekina DA, Gubaidullin RR, Odinokov VN, Maximchik PV, Zhivotovsky B, Bel’skii YP, et al. Mitochondria-targeted betulinic and ursolic acid derivatives: synthesis and anticancer activity. Med Chem Comm. 2017;8:1934–45.

    Article  CAS  Google Scholar 

  23. Spivak AYU, Nedopekina DA, Khalitova RR, Gubaidullin RR, Odinokov VN, Bel’skii YP, et al. Triphenylphosphonium cations of betulinic acid derivatives: synthesis and antitumor activity. Med Chem Res. 2017;26:518–31.

    Article  CAS  Google Scholar 

  24. Spivak AYU, Nedopekina DA, Shakurova ER, Khalitova RR, Gubaidullin RR, Odinokov VN, et al. Synthesis of lupane triterpenoids with triphenylphosphonium substituents and studies of their antitumor activity. Russ Chem Bull. 2013;62:188–98

  25. Sommerwerk S, Heller L, Kerzig C, Kramell AE, Csuk R. Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations. Eur J Med Chem. 2017;127:1–9.

    Article  CAS  Google Scholar 

  26. Fantin VR, Berardi MJ, Scorrano L, Korsmeyer SJ, Leder P. A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell. 2002;2:29–42.

    Article  CAS  Google Scholar 

  27. Fantin VR, Leder P. F16, a mitochondriotoxic compound, triggers apoptosis or necrosis depending on the genetic background of the target carcinoma cell. Cancer Res. 2004;64:329–36.

    Article  CAS  Google Scholar 

  28. Peng YB, Zhao ZL, Liu T, Xie GJ, Jin C, Deng TG, et al. A multi-mitochondrial anticancer agent that selectively kills cancer cells and overcomes drug resistance. Chem Med Chem. 2017;12:250–6.

    Article  CAS  Google Scholar 

  29. Wang J, Fan X-Y, Yang L-YU, He H, Huang R, Jiang F-L, et al. Conjugated 5-fluorouracil with mitochondria-targeting lipophilic cation: design, synthesis and biological evaluation. Med Chem Commun. 2016;7:2016–9.

    Article  CAS  Google Scholar 

  30. Kim DSHL, Chen Z, Nguyen T, Pezzuto JM, Qiu S, Lu Z-Z. A concise semi-synthetic approach to betulinic acid from botulin. Synth Commun. 1997;27:1607–12.

    Article  CAS  Google Scholar 

  31. Xiang C, Li DW, Qi ZD, Jiang FL, Ge YS, Liu Y. Synthesis of F16 conjugated with 5-fluorouracil and biophysical investigation of its interaction with bovine serum albumin by a spectroscopic and molecular modeling approach. Luminescence. 2012;28:865–72.

    Article  Google Scholar 

  32. Zhang X-H, Wang L-Y, Zhai G-H, Wen Z-Y, Zhang Z-X. Microwave-assisted solvent-free synthesis of some dimethine cyanine dyes, spectral properties and TD-DFT/PCM calculations. Bull Korean Chem Soc. 2007;28:2382–8.

    Article  CAS  Google Scholar 

  33. Guo L, Chan MS, Xu D, Tam DY, Bolze F, Lo PK, et al. Indole-based cyanine as a nuclear RNA-selective two-photon fluorescent probe for live cell imaging. ACS Chem Biol. 2015;10:1171–5.

    Article  CAS  Google Scholar 

  34. Suzuki K, Kobayashi A, Kaneko S, Takehira K, Yoshihara T, Ishida H, et al. Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys Chem Chem Phys. 2009;11:9850–60.

    Article  CAS  Google Scholar 

  35. Bernardo TC, Cunha-Oliveira T, Serafim TL, Holy J, Krasutsky D, Kolomitsyna O, et al. Dimethylaminopyridine derivatives of lupane triterpenoids cause mitochondrial disruption and induce the permeability transition. Bioorg Med Chem. 2013;21:7239–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under financial support from the Russian Science Foundation (Grant 19-73-00155). The structural studies of the synthesized compounds were performed with the use of Collective Usage Centre “Agidel” at the Institute of Petrochemistry and Catalysis of RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Yu. Spivak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spivak, A.Y., Nedopekina, D.A., Gubaidullin, R.R. et al. Pentacyclic triterpene acid conjugated with mitochondria-targeting cation F16: Synthesis and evaluation of cytotoxic activities. Med Chem Res 30, 940–951 (2021). https://doi.org/10.1007/s00044-021-02702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02702-z

Keywords

Navigation