Skip to main content

Advertisement

Log in

Repositioning of Isatin hybrids as novel anti-tubercular agents overcoming pre-existing antibiotics resistance

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The widespread deaths of tuberculosis from many decades demands an urgent need for the development of novel anti-tubercular scaffolds that are more potent and highly selective with lower cytotoxicity. Isatin hybrids are endowed with an extensive range of biological activities. Hybridization of isatin with various heterocyclic moieties such as benzofuran, coumarin, tetrahydropyrimidine, quinoline, and well-known drugs like Moxifloxacin, Ciprofloxacin, and so on may provide promising anti-tubercular candidates. This review focuses on the recent developments of isatin-based hybrids possessing potential anti-tubercular activity along with the novel drugs under various phases of clinical trials for the treatment of tuberculosis. The structure-activity relationships are also discussed to provide insights into the potential anti-tubercular candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

MTB:

Mycobacterium tuberculosis

M. Tb.:

Mycobacterium tuberculosis

TB:

Tuberculosis

LTBI:

Latent Tuberculosis Infection

HIV:

Human immunodeficiency virus

WHO:

World Health Organization

MDR-TB:

Multidrug-Resistant Tuberculosis

RR-TB:

Rifampicin-Resistant Tuberculosis

MTB DR:

Mycobacterium tuberculosis Drug Resistant

XDR-TB:

Extensively Drug Resistant Tuberculosis

TDR-TB:

Totally Drug Resistant Tuberculosis

UN:

United States

TST:

Tuberculin Skin Test

IGRA:

Interferon-Gamma Release Assay

QFT:

QuantiFERON-TB

PET-CT:

Positron Emission Tomography and Computed Tomography

DST:

Drug Susceptibility Testing

LAMP:

Loop-Mediated Isothermal Amplification

WGS:

Whole Genome Sequencing

LPA:

Line Probe Assay

DOT:

Directly Observed Therapy

ART:

Antiretroviral Therapy

INH:

Isoniazid

RIF:

Rifampicin

CPFX:

Ciprofloxacin

MXF:

Moxifloxacin

GTFX:

Gatifloxacin

PPI:

Protein-protein interactions

MIC:

Minimum Inhibitory Concentration

CC:

Cytotoxic Concentration

IC50 :

Half maximal inhibitory concentration

SI:

Selectivity Index

RI:

Resistance Index

DR-TB:

Drug resistant tuberculosis

SAR:

Structure-activity relationship

NAD:

Nicotinamide adenine dinucleotide

BACTEC MGIT:

Becton Dickinson Mycobacteria Growth Indicator Tube

RNA:

Ribonucleic acid

DNA:

Deoxyribonucleic acid

ADMET:

Adsorption, Distribution, Metabolism, Excretion, and Toxicity

MOE:

Molecular Operating Environment

References

  1. Harding E. WHO global progress report on tuberculosis elimination. Lancet: Respir Med. 2020;8:19 https://doi.org/10.1016/S2213-2600(19)30418-7.

    Article  Google Scholar 

  2. Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al., Tuberculosis, Nat Rev Dis Prim. 2016;2. https://doi.org/10.1038/nrdp.2016.76.

  3. Sonnenberg P, Glynn JR, Fielding K, Murray J, Godfrey-Fausselt P, Shearer S. How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis 2005;191:150–8. https://doi.org/10.1086/426827.

    Article  PubMed  Google Scholar 

  4. Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med. 2008;5:1091–101. https://doi.org/10.1371/journal.pmed.0050152.

    Article  Google Scholar 

  5. Rehm J, Samokhvalov AV, Neuman MG, Room R, Parry C, Lönnroth K, et al. The association between alcohol use, alcohol use disorders and tuberculosis (TB). A systematic review. BMC Public Health. 2009;9. https://doi.org/10.1186/1471-2458-9-450.

  6. Bates MN, Khalakdina A, Pai M, Chang L, Lessa F, Smith KR. Risk of tuberculosis from exposure to tobacco smoke: a systematic review and meta-analysis. Arch Intern Med. 2007;167:335–42. https://doi.org/10.1001/archinte.167.4.335.

    Article  PubMed  Google Scholar 

  7. Parrish NM, Dick JD, Bishai WR. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol. 1998;6:107–12. https://doi.org/10.1016/S0966-842X(98)01216-5.

    Article  CAS  PubMed  Google Scholar 

  8. Luies L, du Preez I. The echo of pulmonary tuberculosis: mechanisms of clinical symptoms and other disease-induced systemic complications. Clin Microbiol Rev 2020;33:1–19. https://doi.org/10.1128/CMR.00036-20.

    Article  Google Scholar 

  9. Amaral L, Viveiros M. Thioridazine: a non-antibiotic drug highly effective, in combination with first line anti-tuberculosis drugs, against any form of antibiotic resistance of Mycobacterium tuberculosis due to its multi-mechanisms of action. Antibiotics. 2017;6:3 https://doi.org/10.3390/antibiotics6010003.

    Article  CAS  PubMed Central  Google Scholar 

  10. High Burden TB Country List. VirginiaDoH; 2020.

  11. Marks SM, Hirsch-Moverman Y, Salcedo K, et al. Characteristics and costs of multidrug- resistant tuberculosis inpatient care in the United States, 2005–2007. Int J Tuberc Lung Dis. 2016;20:435–41. https://doi.org/10.5588/ijtld.15.0575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. World Health Organization. Tuberculosis patient cost surveys: a handbook. World Health Organization; 2017. https://who.int/tb/publications/patient_cost_surveys/en/.

  13. Jarlier V, Nikaido H. Mycobacterial cell wall: Structure and role in natural resistance to antibiotics. FEMS Microbiol Lett. 1994;123:11–18. https://doi.org/10.1111/j.1574-6968.1994.tb07194.x.

    Article  CAS  PubMed  Google Scholar 

  14. Abraham AO. Mechanism of drug resistance in mycobacterium tuberculosis. Am J Biomed Sci Res. 2020;378–83. https://doi.org/10.34297/AJBSR.2020.07.001181.

  15. Weldeyohannes D, Damtie D, et al. Review on molecular mechanism of first line antibiotic resistance in Mycobacterium tuberculosis. Mycobact Dis. 2014;04:6 https://doi.org/10.4172/2161-1068.1000174.

    Article  Google Scholar 

  16. Click ES, Kurbatova EV, Alexander H, et al. Isoniazid and Rifampin-Resistance mutations associated with resistance to second-line drugs and with sputum culture conversion. J Infect Dis. 2020;221:2072–82. https://doi.org/10.1093/infdis/jiaa042.

    Article  CAS  PubMed  Google Scholar 

  17. Lempens P, Meehan CJ, Vandelannoote K, et al. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Sci Rep. 2018;8:1–9. https://doi.org/10.1038/s41598-018-21378-x.

    Article  CAS  Google Scholar 

  18. Monserrat-Martinez A, Gambin Y, Sierecki E. Thinking outside the bug: Molecular targets and strategies to overcome antibiotic resistance. Int J Mol Sci. 2019;20:1255 https://doi.org/10.3390/ijms20061255.

    Article  CAS  PubMed Central  Google Scholar 

  19. Eoh H, Wang Z, Layre E, Rath P, Morris R, Moody DB, et al. Metabolic anticipation in Mycobacterium tuberculosis. Nat Microbiol. 2017;2. https://doi.org/10.1038/nmicrobiol.2017.84.

  20. Kanabus A. Information about tuberculosis. GHE; 2020. www.tbfacts.org.

  21. Delogu G, Sali M, Fadda G. The biology of mycobacterium tuberculosis infection. Mediterr J Hematol Infect Dis. 2013;5. https://doi.org/10.4084/mjhid.2013.070.

  22. Vultos TD, Mestre O, Rauzier J, Golec M, Rastogi N, Rasolofo V, et al. Evolution and diversity of clonal bacteria: The paradigm of Mycobacterium tuberculosis. PLoS ONE. 2008;3. https://doi.org/10.1371/journal.pone.0001538.

  23. Bolotin E, Hershberg R. Gene loss dominates as a source of genetic variation within clonal pathogenic bacterial species. Genome Biol Evol. 2015;7:2173–87. https://doi.org/10.1093/gbe/evv135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. World Health Organization. Global Tuberculosis Report. World Health Organization; 2019. https://www.who.int/tb/publications/global_report/en/.

  25. Mwaba P, Chakaya JM, Petersen E, Wejse C, Zumla A, Kapata N. Advancing new diagnostic tests for latent tuberculosis infection due to multidrug-resistant strains of Mycobacterium tuberculosis — End of the road? Int J Infect Dis. 2020;92:S69–71. https://doi.org/10.1016/j.ijid.2020.02.011.

    Article  CAS  Google Scholar 

  26. Acharya B, Acharya A, Gautam S, Ghimire SP, Mishra G, Parajuli N, et al. Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Mol Biol Rep. 2020;47:4065–75. https://doi.org/10.1007/s11033-020-05413-7.

    Article  CAS  PubMed  Google Scholar 

  27. Zumla A, Nahid P, Cole ST. Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov. 2013;12:388–404. https://doi.org/10.1038/nrd4001.

    Article  CAS  PubMed  Google Scholar 

  28. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K. The challenge of new drug discovery for tuberculosis. Nature. 2011;469:483–90. https://doi.org/10.1038/nature09657.

    Article  CAS  PubMed  Google Scholar 

  29. Muliaditan M, Della Pasqua O, Evaluation of pharmacokinetic-pharmacodynamic relationships and selection of drug combinations for tuberculosis. Br J Clin Pharmacol. 2020; 1–12. https://doi.org/10.1111/bcp.14371.

  30. Singh R, Dwivedi SP, Gaharwar US, Meena R, Rajamani P, Prasad T. Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol 2020;128:1547–67. https://doi.org/10.1111/jam.14478.

    Article  CAS  PubMed  Google Scholar 

  31. Falzon D, Schünemann HJ, Harausz E, González-Angulo L, Lienhardt C, Jaramillo E, et al., World Health Organization treatment guidelines for drug-resistant tuberculosis, 2016 update. Eur Respir J. 2017;49. https://doi.org/10.1183/13993003.02308-2016.

  32. Rendon A, Tiberi S, Scardigli A, D’Ambrosio L, Centis R, Caminero JA, et al. Classification of drugs to treat multidrug-resistant tuberculosis (MDR-TB): Evidence and perspectives. J Thorac Dis. 2016;8:2666–71. https://doi.org/10.21037/jtd.2016.10.14.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tiberi S, Scardigli A, Centis R, D’Ambrosio L, Muñoz-Torrico M, Salazar-Lezama MÁ, et al. Luna, Classifying new anti-tuberculosis drugs: rationale and future perspectives. Int J Infect Dis. 2017;56:181–4. https://doi.org/10.1016/j.ijid.2016.10.026.

    Article  CAS  PubMed  Google Scholar 

  34. Makarov V, Mikušová K, Development of macozinone for TB treatment: an update, Appl Sci. 2020;10. https://doi.org/10.3390/app10072269.

  35. Umumararungu T, Mukazayire MJ, Mpenda M, Mukanyangezi MF, Nkuranga JB, Mukiza J, et al. A review of recent advances in anti-tubercular drug development. Indian J Tuberc 2020. https://doi.org/10.1016/j.ijtb.2020.07.017.

    Article  PubMed  Google Scholar 

  36. Seijger C, Hoefsloot W, De Guchteneire IB, Te Brake L, Van Ingen J, Kuipers S, et al., High-dose rifampicin in tuberculosis: Experiences from a Dutch tuberculosis centre. PLoS One. 2019;14. https://doi.org/10.1371/journal.pone.0213718.

  37. Freedman DH. Hunting for new drugs with AI The pharmaceutical industry is in a drug-discovery slump. How much can AI help? Nature. 2019;576:S49–53

    Article  CAS  Google Scholar 

  38. Medvedev A, Kopylov A, Buneeva O, Kurbatov L, Tikhonova O, Ivanov A, et al. A neuroprotective dose of isatin causes multilevel changes involving the brain proteome: prospects for further research. Int J Mol Sci. 2020;21:1–23. https://doi.org/10.3390/ijms21114187.

    Article  CAS  Google Scholar 

  39. Medvedev A, Buneeva O, Glover V. Biological targets for isatin and its analogues: Implications for therapy. Biol Targets Ther. 2007;1:151–62

    CAS  Google Scholar 

  40. Bhrigu B, Pathak D, Siddiqui N, Alam MS. Search for biological active isatins: a short review. Int J Pharm Sci Drug Res. 2010;2:229–35. https://www.researchgate.net/publication/281432653.

    CAS  Google Scholar 

  41. Zhang YZ, Du HZ, Liu HL, He QS, Xu Z. Isatin dimers and their biological activities. Arch. Pharm. (Weinheim). 2020;353. https://doi.org/10.1002/ardp.201900299.

  42. Lipinski CA, Lombardo F, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25

    Article  CAS  Google Scholar 

  43. Norinder U, Bergström CAS. Prediction of ADMET properties. ChemMedChem. 2006;1:920–37.

    Article  CAS  Google Scholar 

  44. David C. Molecular mechanism of action (MMoA) in drug delivery. Annu Rep. Med Chem. 2011;46:301–17. https://doi.org/10.1016/B978-0-12-386009-5.00009-6.

    Article  CAS  Google Scholar 

  45. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163–75. https://doi.org/10.1038/nprot.2007.521.

    Article  CAS  PubMed  Google Scholar 

  46. Akhaja TN, Raval JP. Design, synthesis and in vitro evaluation of tetrahydropyrimidine-isatin hybrids as potential antitubercular and antimalarial agents, Chinese. Chem Lett. 2012;23:785–8. https://doi.org/10.1016/j.cclet.2012.05.004.

    Article  CAS  Google Scholar 

  47. Gramatica P, Chirico N, Papa E, et al. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem. 2013;34:2121–32. https://doi.org/10.1002/jcc.23361.

    Article  CAS  Google Scholar 

  48. Saraswat P, Jeyabalan G, Hassan MZ, Rahman MU, Nyola NK. Review of synthesis and various biological activities of spiro heterocyclic compounds comprising oxindole and pyrrolidine moities. Synth Commun. 2016;46:1643–64. https://doi.org/10.1080/00397911.2016.1211704.

    Article  CAS  Google Scholar 

  49. Borad MA, Jethava DJ, Bhoi MN, Patel CN, Pandya HA, Patel HD. Novel isoniazid-spirooxindole derivatives: design, synthesis, biological evaluation, in silico ADMET prediction and computational studies. J Mol Struct. 2020;1222. https://doi.org/10.1016/j.molstruc.2020.128881.

  50. Pogaku V, Krishna VS, Sriram D, Rangan K, Basavoju S. Ultrasonication-ionic liquid synergy for the synthesis of new potent anti-tuberculosis 1,2,4-triazol-1-yl-pyrazole based spirooxindolopyrrolizidines. Bioorg Med Chem Lett. 2019;29:1682–7. https://doi.org/10.1016/j.bmcl.2019.04.026.

    Article  CAS  PubMed  Google Scholar 

  51. Haddad S, Boudriga S, Akhaja TN, Raval JP, Porzio F, Soldera A, et al. A strategic approach to the synthesis of functionalized spirooxindole pyrrolidine derivatives: In vitro antibacterial, antifungal, antimalarial and antitubercular studies. N. J Chem. 2015;39:520–8. https://doi.org/10.1039/c4nj01008f.

    Article  CAS  Google Scholar 

  52. Kumar RS, Rajesh SM, Perumal S, Banerjee D, Yogeeswari P, Sriram D. Novel three-component domino reactions of ketones, isatin and amino acids: Synthesis and discovery of antimycobacterial activity of highly functionalised novel dispiropyrrolidines. Eur J Med Chem. 2010;45:411–22. https://doi.org/10.1016/j.ejmech.2009.09.044.

    Article  CAS  PubMed  Google Scholar 

  53. Vintonyak VV, Warburg K, Kruse H, Grimme S, Hübet K, Rauh D, et al. Identification of Thiazolidinones Spiro-Fused to IndoIin-2-ones as Potent and Selective Inhibitors of the Mycobacterium tuberculosis Protein Tyrosine Phosphatase B. Angew Chem - Int Ed. 2010;49:5902–5. https://doi.org/10.1002/anie.201002138.

    Article  CAS  Google Scholar 

  54. Hendershot EF. Fluoroquinolones. Infect Dis Clin North Am. 1995;9:715–30. https://doi.org/10.2165/00003495-200161060-00004.

    Article  CAS  PubMed  Google Scholar 

  55. Ginsburg AS, Grosset JH, Bishai WR. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis. 2003;3:432–42. https://doi.org/10.1016/S1473-3099(03)00671-6.

    Article  CAS  PubMed  Google Scholar 

  56. Gao F, Chen Z, Ma L, Fan Y, Chen L, Lu G. Synthesis and biological evaluation of moxifloxacin-acetyl-1,2,3-1H-triazole-methylene-isatin hybrids as potential anti-tubercular agents against both drug-susceptible and drug-resistant Mycobacterium tuberculosis strains. Eur J Med Chem. 2019;180:648–55. https://doi.org/10.1016/j.ejmech.2019.07.057.

    Article  CAS  PubMed  Google Scholar 

  57. Hu YQ, Xu Z, Qiang M, Lv ZS. Design, synthesis and in vitro antimycobacterial activities of Isatin-1,2,3-triazole-moxifloxacin Hybrids. J Heterocycl Chem. 2018;55:187–91. https://doi.org/10.1002/jhet.3023.

    Article  CAS  Google Scholar 

  58. Jiang Y, Qian A, Li Y. 1H-1,2,3-Triazole tethered isatin-moxifloxacin: design, synthesis and in vitro anti-mycobacterial evaluation. Arch. Pharm. (Weinheim). 2019;352. https://doi.org/10.1002/ardp.201900040.

  59. Xu Z, Zhao SJ, Deng JL, Wang Q, Lv ZS. Design, synthesis, and antimycobacterial activities of diethylene glycol tethered Moxifloxacin–Isatin Hybrids. J Heterocycl Chem. 2019;56:325–30. https://doi.org/10.1002/jhet.3383.

    Article  CAS  Google Scholar 

  60. Hu YQ, Fan J, Song XF. Design, synthesis and in vitro anti-mycobacterial activity of propylene-1H-1,2,3-triazole-4-methylene-tethered Isatin-moxifloxacin Hybrids. J Heterocycl Chem. 2018;55:246–50. https://doi.org/10.1002/jhet.3032.

    Article  CAS  Google Scholar 

  61. Yan X, Lv Z, Wen J, Zhao S, Xu Z. Synthesis and in vitro evaluation of novel substituted isatin-propylene-1H-1,2,3-triazole-4-methylene-moxifloxacin hybrids for their anti-mycobacterial activities. Eur J Med Chem. 2018;143:899–904. https://doi.org/10.1016/j.ejmech.2017.11.090.

    Article  CAS  PubMed  Google Scholar 

  62. Xu Z, Song XF, Fan J, Lv ZS. Design, Synthesis, and in vitro Anti-mycobacterial Evaluation of Propylene-1H-1,2,3-triazole-4-methylene-tethered (Thio)semicarbazone-isatin-moxifloxacin Hybrids. J Heterocycl Chem. 2018;55:77–82. https://doi.org/10.1002/jhet.3004.

    Article  CAS  Google Scholar 

  63. Chen R, Zhang H, Ma T, Xue H, Miao Z, Chen L, et al. Ciprofloxacin-1,2,3-triazole-isatin hybrids tethered via amide: Design, synthesis, and in vitro anti-mycobacterial activity evaluation. Bioorg Med Chem Lett. 2019;29:2635–7. https://doi.org/10.1016/j.bmcl.2019.07.041.

    Article  CAS  PubMed  Google Scholar 

  64. Xu Z, Zhao SJ, Deng JL, Wang Q, Lv ZS. Ciprofloxacin–Isatin hybrids and their antimycobacterial activities. J Heterocycl Chem 2019;56:319–24. https://doi.org/10.1002/jhet.3382.

    Article  CAS  Google Scholar 

  65. Gao T, Hu W, Zeng Z, Sun S, Wang R. Design, synthesis, and evaluation of tetraethylene glycol tethered ciprofloxacin–Isatin hybrids as novel antitubercular agents. J Heterocycl Chem. 2019;56:306–11. https://doi.org/10.1002/jhet.3338.

    Article  CAS  Google Scholar 

  66. Fan YL, Liu M, Zhang FZ, Zhang S. Design, synthesis and in vitro antitubercular evaluation of isatin-ciprofloxacin hybrids with hydrogen bonding capacity. J Heterocycl Chem. 2018;55:1494–8. https://doi.org/10.1002/jhet.3157.

    Article  CAS  Google Scholar 

  67. Wang R, Yin X, Zhang Y, Yan W. Design, synthesis and antimicrobial evaluation of propylene-tethered ciprofloxacin-isatin hybrids. Eur J Med Chem. 2018;156:580–6. https://doi.org/10.1016/j.ejmech.2018.07.025.

    Article  CAS  PubMed  Google Scholar 

  68. Xu Z, Song XF, Qiang M, Lv ZS. 1H-1,2,3-triazole-tethered 8-OMe ciprofloxacin and isatin hybrids: design, synthesis and in vitro anti-mycobacterial activities. J Heterocycl Chem. 2017;54:3735–41. https://doi.org/10.1002/jhet.2980.

    Article  CAS  Google Scholar 

  69. Xu Z, Song X, Hu Y, Qiang M, Lv Z. Design, synthesis and in vitro anti-mycobacterial activities of 8-OMe Ciprofloxacin-1H-1,2,3-triazole-isatin-(thio) Semicarbazide/Oxime Hybrids. J Heterocycl Chem. 2018;55:192–8. https://doi.org/10.1002/jhet.3024.

    Article  CAS  Google Scholar 

  70. Hu YQ, Meng LD, Qiang M, Song XF. Design, synthesis, and in vitro anti-mycobacterial evaluation 1H-1,2,3-triazole-tethered ciprofloxacin and isatin conjugates. J Heterocycl Chem. 2017;54:3725–9. https://doi.org/10.1002/jhet.2933.

    Article  CAS  Google Scholar 

  71. Xu Z, Lv ZS, Song XF, Qiang M. Ciprofloxacin-isatin-1H-1,2,3-triazole hybrids: design, synthesis, and in vitro anti-tubercular activity against M. tuberculosis. J Heterocycl Chem. 2018;55:97–102. https://doi.org/10.1002/jhet.3010.

    Article  CAS  Google Scholar 

  72. Feng LS, Liu ML, Zhang S, Chai Y, Wang B, Bin Zhang Y, et al. Synthesis and in vitro antimycobacterial activity of 8-OCH3 ciprofloxacin methylene and ethylene isatin derivatives. Eur J Med Chem. 2011;46:341–8. https://doi.org/10.1016/j.ejmech.2010.11.023.

    Article  CAS  PubMed  Google Scholar 

  73. Ding Z, Hou P, Liu B. Gatifloxacin-1,2,3-triazole-isatin hybrids and their antimycobacterial activities. Arch Pharm. (Weinheim). 2019;352. https://doi.org/10.1002/ardp.201900135.

  74. Xu Z, Zhao SJ, Deng JL, Wang Q, Lv ZS. Gatifloxacin–Isatin hybrids and their antimycobacterial activities. J Heterocycl Chem. 2019;56:331–7. https://doi.org/10.1002/jhet.3386.

    Article  CAS  Google Scholar 

  75. Di Wang H, Fan YL, Zhou J, Xu Y, Guan J. Design, synthesis, and in vitro anti-mycobacterial activities of propylene-tethered Gatifloxacin-Isatin hybrids. J Heterocycl Chem 2018;55:1991–6. https://doi.org/10.1002/jhet.3227.

    Article  CAS  Google Scholar 

  76. Xia X, Zhang Q, Zhao L, Hu Y. Azide-alkyne cycloaddition towards 1H-1,2,3-triazole-tethered gatifloxacin and isatin conjugates: design, synthesis and in vitro anti-mycobacterial evaluation. Eur J Med Chem. 2017;138:66–71. https://doi.org/10.1016/j.ejmech.2017.05.057.

    Article  CAS  Google Scholar 

  77. Xu Z, Zhang S, Song X, Qiang M, Lv Z. Design, synthesis and in vitro anti-mycobacterial evaluation of gatifloxacin-1H-1,2,3-triazole-isatin hybrids. Bioorg Med Chem Lett 2017;27:3643–6. https://doi.org/10.1016/j.bmcl.2017.07.023.

    Article  CAS  PubMed  Google Scholar 

  78. Feng LS, Liu ML, Wang B, Chai Y, Hao XQ, Meng S, et al. Synthesis and in vitro antimycobacterial activity of balofloxacin ethylene isatin derivatives. Eur J Med Chem. 2010;45:3407–12. https://doi.org/10.1016/j.ejmech.2010.04.027.

    Article  CAS  PubMed  Google Scholar 

  79. Das S, Fredrik Pettersson BM, Behra PRK, et al. The Mycobacterium phlei Genome: expectations and surprises. Genome Biol Evol. 2016;8:975–85. https://doi.org/10.1093/gbe/evw049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sundarsingh JA, Rajan T,RJ,A, Shankar V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J Infect Public Health. 2020;13:1255–64. https://doi.org/10.1016/j.jiph.2020.06.023.

    Article  Google Scholar 

  81. Hards K, Robson JR, Berney M, et al. Bactericidal mode of action of bedaquiline. J Antimicrob Chemother. 2015;70:2028–37. https://doi.org/10.1093/jac/dkv054.

    Article  CAS  PubMed  Google Scholar 

  82. Drapal M, Wheeler PR, Fraser PD. The assessment of changes to the nontuberculous mycobacterial metabolome in response to anti-TB drugs. FEMS Microbiol Lett. 2018;365:1–9. https://doi.org/10.1093/femsle/fny153.

    Article  CAS  Google Scholar 

  83. Degiacomi G, Sammartino JC, Sinigiani V, et al. In vitro study of bedaquiline resistance in mycobacterium tuberculosis multi-drug resistant clinical isolates. Front Microbiol. 2020;11. https://doi.org/10.3389/fmicb.2020.559469.

  84. Karunakaran P, Davies J. Genetic Antagonism and Hypermutability in Mycobacterium smegmatis. Am Soc Microbiol. 2000;182:3331–5.

    CAS  Google Scholar 

  85. Hiremathad A, Patil MR, Chethana KR, Chand K, Santos MA, Keri RS. Benzofuran: an emerging scaffold for antimicrobial agents. RSC Adv. 2015;5:96809–28. https://doi.org/10.1039/c5ra20658h.

    Article  CAS  Google Scholar 

  86. Dawood KM. An update on benzofuran inhibitors: a patent review. Expert Opin Ther Pat 2019;29:841–70. https://doi.org/10.1080/13543776.2019.1673727.

    Article  CAS  PubMed  Google Scholar 

  87. Gao F, Wang T, Gao M, Zhang X, Liu Z, Zhao SJ, et al. Benzofuran-isatin-imine hybrids tethered via different length alkyl linkers: Design, synthesis and in vitro evaluation of anti-tubercular and anti-bacterial activities as well as cytotoxicity. Eur J Med Chem. 2019;165:323–31. https://doi.org/10.1016/j.ejmech.2019.01.042.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang Y, Wang R, Zhang T, Yan W, Chen Y, Zhang Y, et al. Benzofuran-isatin-hydroxylimine/thiosemicarbazide hybrids: Design, synthesis and in vitro anti-mycobacterial activity evaluation. Chin Chem Lett. 2019;30:653–5. https://doi.org/10.1016/j.cclet.2018.11.032.

    Article  CAS  Google Scholar 

  89. Gao F, Ye L, Wang Y, Kong F, Zhao S, Xiao J, et al. Benzofuran-isatin hybrids and their in vitro anti-mycobacterial activities against multi-drug resistant Mycobacterium tuberculosis. Eur J Med Chem. 2019;183. https://doi.org/10.1016/j.ejmech.2019.111678.

  90. Gao F, Chen Z, Ma L, Qiu L, Lin J, Lu G. Benzofuran-isatin hybrids tethered via different length alkyl linkers and their in vitro anti-mycobacterial activities. Bioorg Med Chem. 2019;27:2652–6. https://doi.org/10.1016/j.bmc.2019.04.017.

    Article  CAS  PubMed  Google Scholar 

  91. Guo H. Design, synthesis, and in vitro anti-mycobacterial activities of propylene tethered Benzofuran–Isatin hybrids. J Heterocycl Chem. 2019;56:338–42. https://doi.org/10.1002/jhet.3387.

    Article  CAS  Google Scholar 

  92. Gao F, Yang H, Lu T, Chen Z, Ma L, Xu Z, et al. Design, synthesis and anti-mycobacterial activity evaluation of benzofuran-isatin hybrids. Eur J Med Chem. 2018;159:277–81. https://doi.org/10.1016/j.ejmech.2018.09.049.

    Article  CAS  PubMed  Google Scholar 

  93. Xu L, Zhao X-Y, Wu Y-L, Zhang W. The study on biological and pharmacological activity of coumarins. Adv Eng Res. 2015;135–8. https://doi.org/10.2991/ap3er-15.2015.33.

  94. Matos MJ, Santana L, Uriarte E, Abreu OA, Molina E, Yordi EG. Coumarins—an important class of phytochemicals. In: Phytochemicals—Isolation, Characterisation and Role in Human Health. InTech; 2015. https://doi.org/10.5772/59982.

  95. Kuchana DV, Nagaraju G. A review on biological activity and synthetis of coumarins. Indo Am J Pharm Sci. 2017;4:3510–27. https://doi.org/10.5281/zenodo.1004361.

    Article  CAS  Google Scholar 

  96. Liu B, Hu G, Tang X, Wang G, Xu Z. 1H-1,2,3-Triazole-tethered Isatin–coumarin Hybrids: design, synthesis and in vitro anti-mycobacterial evaluation. J Heterocycl Chem. 2018;55:775–80. https://doi.org/10.1002/jhet.3093.

    Article  CAS  Google Scholar 

  97. Xu Y, Dang R, Guan J, Xu Z, Zhao S, Hu Y. Isatin-(thio)semicarbazide/oxime-1H-1,2,3-triazole-coumarin Hybrids: Design, Synthesis, and in vitro Anti-mycobacterial Evaluation. J Heterocycl Chem. 2018;55:1069–73. https://doi.org/10.1002/jhet.3104.

    Article  CAS  Google Scholar 

  98. Huang GC, Xu Y, Xu Z, Lv ZS, Zhang J, Guo HY, et al. Propylene-1H-1,2,3-triazole-4-methylene-tethered Isatin-coumarin Hybrids: Design, Synthesis, and In Vitro Anti-tubercular Evaluation. J Heterocycl Chem. 2018;55:830–5. https://doi.org/10.1002/jhet.3106.

    Article  CAS  Google Scholar 

  99. Gao T, Zeng Z, Wang G, Sun S, Liu Y. Synthesis of Ethylene tethered isatin-coumarin hybrids and evaluation of their in vitro antimycobacterial activities. J Heterocycl Chem. 2018;55:1484–8. https://doi.org/10.1002/jhet.3161.

    Article  CAS  Google Scholar 

  100. Peter S, Aderibigbe BA. Ferrocene-based compounds with antimalaria/anticancer activity. Molecules. 2019;24. https://doi.org/10.3390/molecules24193604.

  101. Kumar K, Biot C, Carrère-Kremer S, Kremer L, Guérardel Y, Roussel P, et al. Base-promoted expedient access to spiroisatins: synthesis and antitubercular evaluation of 1 H -1,2,3-triazole-tethered spiroisatin-ferrocene and isatin-ferrocene conjugates. Organometallics. 2013;32:7386–98. https://doi.org/10.1021/om4009229.

    Article  CAS  Google Scholar 

  102. Kumar K, Carrère-Kremer S, Kremer L, Guérardel Y, Biot C, Kumar V. 1 H -1,2,3-Triazole-tethered isatin-ferrocene and isatin-ferrocenylchalcone conjugates: Synthesis and in vitro antitubercular evaluation. Organometallics. 2013;32:5713–9. https://doi.org/10.1021/om301157z.

    Article  CAS  Google Scholar 

  103. Liu B, Wang GQ, Peng YH, Tang XQ, Hu GW. Design, synthesis, and in vitro antimycobacterial activities of butylene tethered 7-fluoroisatin-isatin scaffolds. J Heterocycl Chem. 2019;56:3423–8. https://doi.org/10.1002/jhet.3696.

    Article  CAS  Google Scholar 

  104. Li W, Zhao SJ, Gao F, Lv ZS, Tu JY, Xu Z. Synthesis and in vitro anti-tumor, anti-mycobacterial and anti-HIV activities of diethylene-glycol-tethered bis-isatin derivatives. ChemistrySelect. 2018;3:10250–4. https://doi.org/10.1002/slct.201802185.

    Article  CAS  Google Scholar 

  105. Xu Y, Guan J, Xu Z, Zhao S. Design, synthesis and in vitro anti-mycobacterial activities of homonuclear and heteronuclear bis-isatin derivatives. Fitoterapia. 2018;127:383–6. https://doi.org/10.1016/j.fitote.2018.03.018.

    Article  CAS  PubMed  Google Scholar 

  106. Hua X, Zhang G, Zhang D, Wu Y. Design, synthesis, and in vitro anti-mycobacterial activities of propylene-tethered heteronuclear bis-isatin derivatives. J Heterocycl Chem. 2018;55:1504–8. https://doi.org/10.1002/jhet.3185.

    Article  CAS  Google Scholar 

  107. Zhao SQ, Xu Y, Guan J, Zhao S, De Zhang G, Xu Z. Tetraethylene glycol tethered heteronuclear bis-isatin derivatives: design, synthesis, and in vitro anti-mycobacterial activities. J Heterocycl Chem. 2018;55:2172–7. https://doi.org/10.1002/jhet.3255.

    Article  CAS  Google Scholar 

  108. Zhao SJ, Lv ZS, Shi L, Zhao SQ, Xu Z. Design, synthesis, and in vitro anti-mycobacterial activities of tetraethylene glycol tethered isatin dimers. J Heterocycl Chem. 2018;55:2985–9. https://doi.org/10.1002/jhet.3324.

    Article  CAS  Google Scholar 

  109. Zhao SJ, Lv ZS, Deng JL, Gao F, De Zhang G, Xu Z. Design, synthesis, and in vitro anti-mycobacterial activities of 1,2,3-triazole-tetraethylene glycol tethered isatin dimers. J Heterocycl Chem. 2018;55:3006–10. https://doi.org/10.1002/jhet.3349.

    Article  CAS  Google Scholar 

  110. Hu YQ, Song XF, Fan J. Design, synthesis, and in vitro antimycobacterial activity of propylene-tethered isatin dimmers. J Heterocycl Chem. 2018;55:265–8. https://doi.org/10.1002/jhet.3042.

    Article  CAS  Google Scholar 

  111. Kajal A, Bala S, Kamboj S, Sharma N, Saini V. Schiff bases: a versatile pharmacophore. J Catal. 2013;2013:1–14. https://doi.org/10.1155/2013/893512.

    Article  CAS  Google Scholar 

  112. Hassan M, Ghaffari R, Sardari S, Farahani Y, Mohebbi S. Discovery of novel isatin-based thiosemicarbazones: synthesis, antibacterial, antifungal, and antimycobacterial screening. Res Pharm Sci. 2020;15:281 https://doi.org/10.4103/1735-5362.288435.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Fahmi MRG, Khumaidah L, Ilmiah TK, Fadlan A, Santoso M, 2-thiophenecarboxylic acid hydrazide derivatives: synthesis and anti-tuberculosis studies. In: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing; 2018;349. https://doi.org/10.1088/1757-899X/349/1/012039.

  114. Murali K, Avinash R, Kirthiga R, Franzblau SG, Synthesis, antibacterial, and antitubercular studies of some novel isatin derivatives. Med Chem Res. 2012;21. https://doi.org/10.1007/s00044-012-9971-7.

  115. Rangaraju A, Pannerselvam P, Murali K. Synthesis of Novel 1H- Indole-2, 3-Dione derivatives as potent antimycobacterial agents. IJAPBC. 2013;2:616–22

    CAS  Google Scholar 

  116. Aboul-Fadl T, Radwan AA, Abdel-Aziz HA, Baseeruddin M, Attia MI, Kadi A. Novel schiff bases of indoline-2,3-dione and nalidixic acid hydrazide: Synthesis, in vitro antimycobacterial and in silico mycobacterium tuberculosis (MTB) DNA gyrase inhibitory activity. Dig J Nanomater Biostructures 2012;7:329–38. https://www.researchgate.net/publication/236220050.

    Google Scholar 

  117. Manjunatha UH, Madhusudan K, Visweswariah SS, Nagaraja V. Structural heterogeneity in DNA gyrases from Gram-positive and Gram-negative bacteria. Curr Sc. 2000;78:968–74. 2000.

    Google Scholar 

  118. Aboul-Fadl T, Abdel-Aziz HA, Abdel-Hamid MK, Elsaman T, Thanassi J, Pucci MJ. Schiff bases of indoline-2,3-dione: Potential novel inhibitors of mycobacterium tuberculosis (Mtb) DNA gyrase. Molecules. 2011;16:7864–79. https://doi.org/10.3390/molecules16097864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Aboul-Fadl T, Abdel-Hamid M, Youssef AF. Schiff bases of indoline-2,3-dione(isatin) derivatives as efficient agents against resistant strains of Mycobacterium tuberculosis. Der Pharma Chem. 2015;7:217–25. https://www.researchgate.net/publication/282920082.

    CAS  Google Scholar 

  120. Aboul-Fadl T, Bin-Jubair FAS, Aboul-Wafa O. Schiff bases of indoline-2,3-dione (isatin) derivatives and nalidixic acid carbohydrazide, synthesis, antitubercular activity and pharmacophoric model building. Eur J Med Chem 2010;45:4578–86. https://doi.org/10.1016/j.ejmech.2010.07.020.

    Article  CAS  PubMed  Google Scholar 

  121. Akhaja TN, Raval JP. Design, synthesis, in vitro evaluation of tetrahydropyrimidine-isatin hybrids as potential antibacterial, antifungal and anti-tubercular agents. Chin Chem Lett. 2012;23:446–9. https://doi.org/10.1016/j.cclet.2012.01.040.

    Article  CAS  Google Scholar 

  122. Annuur RM, Titisari DA, Dinarlita RR, Fadlan A, Ersam T, Nuryastuti T, et al., Synthesis and anti-tuberculosis activity of trisindolines. In: AIP Conference Proceedings. American Institute of Physics Inc.; 2018. https://doi.org/10.1063/1.5082493.

  123. Maddela S, Makula A. Design, synthesis and docking study of some novel isatin-quinoline hybrids as potential antitubercular agents. Anti-Infective Agents. 2016;14:53–62. https://www.ingentaconnect.com/content/ben/aia/2016/00000014/00000001/art00010.

  124. Shaikh MH, Subhedar DD, Khan FAK, Sangshetti JN, Nawale L, Arkile M, et al. Synthesis of novel triazole-incorporated isatin derivatives as antifungal, antitubercular, and antioxidant agents and molecular docking study. J Heterocycl Chem 2017;54:413–21. https://doi.org/10.1002/jhet.2598.

    Article  CAS  Google Scholar 

  125. Joy N, Mathew B. Molecular hybridization and preclinical evaluation of imines from para-substituted 4-phenyl 2-amino Thiazole Incorporated with Isatin Analogues as antitubercular agents. Anti-Infective Agents. 2015;13:60–64. http://www.organic-chemistry.org/.

    Article  CAS  Google Scholar 

  126. Klein LL, Petukhova V, Wan B, Wang Y, Santasiero BD, Lankin DC, et al. A novel indigoid anti-tuberculosis agent. Bioorg Med Chem Lett. 2014;24:268–70. https://doi.org/10.1016/j.bmcl.2013.11.024.

    Article  CAS  PubMed  Google Scholar 

  127. Jeankumar VU, Alokam R, Sridevi JP, Suryadevara P, Matikonda SS, Peddi S, et al. Discovery and structure optimization of a series of isatin derivatives as Mycobacterium tuberculosis chorismate mutase inhibitors. Chem Biol Drug Des. 2014;83:498–506. https://doi.org/10.1111/cbdd.12265.

    Article  CAS  PubMed  Google Scholar 

  128. Raj R, Biot C, Carrère-Kremer S, Kremer L, Guérardel Y, Gut J, et al. 7-chloroquinoline-isatin conjugates: antimalarial, antitubercular, and cytotoxic evaluation. Chem Biol Drug Des 2014;83:622–9. https://doi.org/10.1111/cbdd.12273.

    Article  CAS  PubMed  Google Scholar 

  129. Akhaja TN, Raval JP. New carbodithioate derivatives: synthesis, characterization, and in vitro antibacterial, antifungal, antitubercular, and antimalarial activity. Med Chem Res 2013;22:4700–7. https://doi.org/10.1007/s00044-013-0472-0.

    Article  CAS  Google Scholar 

  130. Kumar SB, Ravinder M, Kishore G, Jayathirtha Rao V, Yogeeswari P, Sriram D. Synthesis, antitubercular and anticancer activity of new Baylis-Hillman adduct-derived N-cinnamyl-substituted isatin derivatives. Med Chem Res. 2014;23:1934–40. https://doi.org/10.1007/s00044-013-0787-x.

    Article  CAS  PubMed  Google Scholar 

  131. Karki SS, Hazare R, Kumar S, Saxena A, Katiyar A. Synthesis and antimicrobial activity of some 3-substituted-2-oxindole derivatives. 2011;8:169–78. https://www.researchgate.net/publication/286228633.

  132. Hans RH, Wiid IJF, Van Helden PD, Wan B, Franzblau SG, Gut J, et al. Novel thiolactone-isatin hybrids as potential antimalarial and antitubercular agents. Bioorg Med Chem Lett. 2011;21:2055–8. https://doi.org/10.1016/j.bmcl.2011.02.008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Department of Chemistry, University of Delhi, India. P.T is thankful to Council for Scientific and Industrial Research, New Delhi, India for the grant of Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Takkar, P. Repositioning of Isatin hybrids as novel anti-tubercular agents overcoming pre-existing antibiotics resistance. Med Chem Res 30, 847–876 (2021). https://doi.org/10.1007/s00044-021-02699-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02699-5

Keywords

Navigation