Dihydropyrimidones: A ligands urease recognition study and mechanistic insight through in vitro and in silico approach

Abstract

Scaffold varied dihydropyrimidone derivatives 120 were evaluated for their selective urease inhibitory kinetics potential. Compounds 1, 2, 3, 4, 5, 6, and 12 were found to be the most promising urease inhibitors and showed the inhibition (Ki values) within the range of 9.9 ± 0.5 to 18.3 ± 0.4 µM. Lineweaver–Burk plot, Dixon plot and their secondary replots confirm that all these molecules have followed competitive mode of inhibition. Docking arrangements (MOE) revealed that all the ligands bind in the active site and therefore compete with substrate urea. Molecular docking studies of all compounds have confirmed the binding interactions of various ligands with the amino acid residues as well as Ni atoms of active site. Furthermore, these compounds 120 were also tested for their cytotoxicity against human neutrophils and plants and were found to be non-toxic.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

References

  1. 1.

    Qin J, Zhao S-S, Liu Y-P, Man Z-W, Wang P, Wang L-N, et al. Preparations, characterization, and biological features of mononuclear Cu (II) complexes based on hydrazone ligands. Bioorg Med Chem Lett. 2016;26:4925–4929.

    CAS  Article  Google Scholar 

  2. 2.

    Wu C-H, Huang M-Y, Yeh C-S, Wang J-Y, Cheng T-L, Lin S-R. Overexpression of Helicobacter pylori–associated urease mRNAs in human gastric cancer. DNA Cell Biol. 2007;26:641–648.

    CAS  Article  Google Scholar 

  3. 3.

    Parsons CL. The role of a leaky epithelium and potassium in the generation of bladder symptoms in interstitial cystitis/overactive bladder, urethral syndrome, prostatitis and gynaecological chronic pelvic pain. BJU Int. 2011;107:370–375.

    Article  Google Scholar 

  4. 4.

    Shehzad MT, Khan A, Islam M, Halim SA, Khiat M, Anwar MU, et al. Synthesis, characterization and molecular docking of some novel hydrazonothiazolines as urease inhibitors. Bioorg Chem. 2020;94:103404.

    CAS  Article  Google Scholar 

  5. 5.

    Zerner B. Recent advances in the chemistry of an old enzyme, urease. Bioorg Chem. 1991;19:116–131.

    CAS  Article  Google Scholar 

  6. 6.

    Hausinger RP. Metabolic versatility of prokaryotes for urea decomposition. J Bacteriol. 2004;186:2520–2522.

    CAS  Article  Google Scholar 

  7. 7.

    Mobley H, Hausinger R. Microbial ureases: significance, regulation, and molecular characterization. Microbiol Mol Biol Rev. 1989;53:85–108.

    CAS  Google Scholar 

  8. 8.

    Mobley H, Island MD, Hausinger RP. Molecular biology of microbial ureases. Microbiol Mol Biol Rev. 1995;59:451–480.

    CAS  Google Scholar 

  9. 9.

    Qin Y, Cabral JM. Kinetic studies of the urease-catalyzed hydrolysis of urea in a buffer-free system. Appl Biochem Biotechnol. 1994;49:217–240.

    CAS  Article  Google Scholar 

  10. 10.

    Arfan M, Ali M, Ahmad H, Anis I, Khan A, Choudhary MI, et al. Urease inhibitors from Hypericum oblongifolium WALL. J Enzym Inhib Med Chem. 2010;25:296–299.

    CAS  Article  Google Scholar 

  11. 11.

    Bremner J. Recent research on problems in the use of urea as a nitrogen fertilizer. Nitrogen Econ Trop Soils. 1995;42:321–329.

    CAS  Article  Google Scholar 

  12. 12.

    Prakash O, Bachan Upadhyay LS. Acetohydroxamate inhibition of the activity of urease from dehusked seeds of water melon (Citrullus vulgaris). J Enzym Inhib Med Chem. 2004;19:381–387.

    CAS  Article  Google Scholar 

  13. 13.

    Rao D, Ghai S. Effect of phenylphosphorodiamidate on urea hydrolysis, ammonia volatilization and rice growth in an alkali soil. Plant Soil. 1986;94:313–320.

    CAS  Article  Google Scholar 

  14. 14.

    Islam M, Khan A, Shehzad MT, Hameed A, Ahmed N, Halim SA, et al. Synthesis and characterization of new thiosemicarbazones, as potent urease inhibitors: in-vitro and in-silico studies. Bioorg Chem. 2019;87:155–162.

    CAS  Article  Google Scholar 

  15. 15.

    Macegoniuk K, Grela E, Palus J, Rudzińska-Szostak E, Grabowiecka A, Biernat M, et al. 1, 2-Benzisoselenazol-3 (2 H)-one derivatives as a new class of bacterial urease inhibitors. J Med Chem. 2016;59:8125–8133.

    CAS  Article  Google Scholar 

  16. 16.

    Shamim S, Khan KM, Salar U, Ali F, Lodhi MA, Taha M, et al. 5-Acetyl-6-methyl-4-aryl-3, 4-dihydropyrimidin-2 (1H)-ones: As potent urease inhibitors; synthesis, in-vitro screening, and molecular modeling study. Bioorg Chem. 2018;76:37–52.

    CAS  Article  Google Scholar 

  17. 17.

    Khan I, Khan A, Halim SA, Saeed A, Mehsud S, Csuk R, et al. Exploring biological efficacy of coumarin clubbed thiazolo [3, 2–b][1, 2, 4] triazoles as efficient inhibitors of urease: a biochemical and in silico approach. Int J Biol Macromol. 2020;142:345–354.

    CAS  Article  Google Scholar 

  18. 18.

    Kazmi M, Khan I, Khan A, Halim SA, Saeed A, Mehsud S, et al. Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: synthesis, assessment of therapeutic potential and computational docking analysis. Biorg. Med Chem. 2019;27:115123.

    CAS  Google Scholar 

  19. 19.

    Khan I, Ali S, Hameed S, Rama NH, Hussain MT, Wadood A, et al. Synthesis, antioxidant activities and urease inhibition of some new 1, 2, 4-triazole and 1, 3, 4-thiadiazole derivatives. Eur J Med Chem. 2010;45:5200–5207.

    CAS  Article  Google Scholar 

  20. 20.

    Iqbal S, Khan A, Nazir R, Kiran S, Perveen S, Khan KM, et al. Synthesis of β-ketosulfone derivatives as new non-cytotoxic urease inhibitors in-vitro. Medicinal Chem. 2020;16:244–255.

    CAS  Article  Google Scholar 

  21. 21.

    Khan KM, Wadood A, Ali M, Ul-Haq Z, Lodhi MA, Khan M, et al. Identification of potent urease inhibitors via ligand-and structure-based virtual screening and in-vitro assays. J Mol Graph Model. 2010;28:792–798.

    CAS  Article  Google Scholar 

  22. 22.

    Khan M, Ahad G, Manaf A, Naz R, Hussain SR, Deeba F, et al. Synthesis, in vitro urease inhibitory activity, and molecular docking studies of (perfluorophenyl) hydrazone derivatives. Med Chem Res. 2019;28:873–883.

    CAS  Article  Google Scholar 

  23. 23.

    Ibrar A, Kazmi M, Khan A, Halim SA, Saeed A, Mehsud S, et al. Robust therapeutic potential of carbazole-triazine hybrids as a new class of urease inhibitors: a distinctive combination of nitrogen-containing heterocycles. Bioorg Chem. 2020;95:103479.

    CAS  Article  Google Scholar 

  24. 24.

    Pope AJ, Toseland N, Rushant B, Richardson S, Mcvey M, Hills J. Effect of potent urease inhibitor, fluorofamide, on Helicobacter sp. in vivo and in vitron. Dig Dis Sci. 1998;43:109–119.

    CAS  Article  Google Scholar 

  25. 25.

    Hawtin P, Delves H, Newell D. The demonstration of nickel in the urease of Helicobacter pylori by atomic absorption spectroscopy. FEMS Microbiol Lett. 1991;77:51–54.

    CAS  Article  Google Scholar 

  26. 26.

    Varner JE, Boyer P. Urease. The enzymes. New York, NY: Academic Press; 1960. pp. 247–256.

    Google Scholar 

  27. 27.

    Reithel F. 1 Ureases. The enzymes: Elsevier; 1971. vol. 4, pp. 1–21.

  28. 28.

    Sumner JB, Somers GF. Chemistry and methods of enzymes: Academic Press Inc., Publishers, New York, NY; 1953.

  29. 29.

    Devesa SS, Blot WJ, Fraumeni JF Jr. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer Interdis Int J Am Cancer Soc. 1998;83:2049–2053.

    CAS  Google Scholar 

  30. 30.

    Krogmeier MJ, McCarty GW, Bremner JM. Potential phytotoxicity associated with the use of soil urease inhibitors. Proc Natl Acad Sci. 1989;86:1110–1112.

  31. 31.

    Weatherburn M. Phenol-hypochlorite reaction for determination of ammonia. Anal Chem. 1967;39:971–974.

    CAS  Article  Google Scholar 

  32. 32.

    Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc. 1934;56:658–666.

    CAS  Article  Google Scholar 

  33. 33.

    Dixon M. The determination of enzyme inhibitor constants. Biochem J. 1953;55:170.

    CAS  Article  Google Scholar 

  34. 34.

    Leatherbarrow R. GraFit 5.0. Staines, UK: Erithacus Software Ltd; 1998.

    Google Scholar 

  35. 35.

    Molecular Operating Environment Chemical Computing Group ULC. 1010 Sherbooke St West, suite 910, Montreal, QC, Canada, H3A 2R7 2018. 2018.

  36. 36.

    Mills N. ChemDraw Ultra 10.0 CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. www.cambridgesoft.com. Commercial Price: 1910fordownload, 2150 for CD-ROM; Academic Price: 710 for download, 800 for CD-ROM, J. Am. Chem. Soc. 2006, 128, 13649-13650. ACS Publications.

  37. 37.

    Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S. The complex of Bacillus pasteurii urease with acetohydroxamate anion from X-ray data at 1.55 Å resolution. JBIC J Biol Inorg Chem. 2000;5:110–118.

    CAS  Article  Google Scholar 

  38. 38.

    Boström J, Greenwood JR, Gottfries J. Assessing the performance of OMEGA with respect to retrieving bioactive conformations. J Mol Graph Model. 2003;21:449–462.

    Article  Google Scholar 

  39. 39.

    Siddiqui RA, English D, Harvey K, Cui Y, Martin MI, Wentland J, et al. Phorbol ester‐induced priming of superoxide generation by phosphatidic acid‐stimulated neutrophils and granule‐free neutrophil cytoplasts. J Leukoc Biol. 1995;58:189–195.

    CAS  Article  Google Scholar 

  40. 40.

    Cetin Y, Bullerman LB. Cytotoxicity of Fusarium mycotoxins to mammalian cell cultures as determined by the MTT bioassay. Food Chem Toxicol. 2005;43:755–764.

    CAS  Article  Google Scholar 

  41. 41.

    MacLaughin J, Chnag C, Smith D. Bench-top bioassays for the discovery of bioactive natural product: an update. Stud Nat Prod Chem. 1991;9:383–409.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Higher Education Commission (HEC) Pakistan for financial support under “National Research Support Program for Universities” (Project No. 5079) and King Fahad University of Petroleum and Minerals (KFUPM) Saudi Arabia (Project No. SB191017).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Arif Lodhi or Ajmal Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, F.A., Shamim, S., Ullah, N. et al. Dihydropyrimidones: A ligands urease recognition study and mechanistic insight through in vitro and in silico approach. Med Chem Res 30, 120–132 (2021). https://doi.org/10.1007/s00044-020-02643-z

Download citation

Keywords

  • Dihydropyrimidones
  • Enzyme kinetics
  • Michaelis–Menten kinetics
  • Neutrophil based cytotoxicity
  • Phytotoxicity