Skip to main content

Propargylated monocarbonyl curcumin analogues: synthesis, bioevaluation and molecular docking study

Abstract

In the current experimental study, we have synthesised new monocarbonyl curcumin analogues bearing propargyl ether moiety in their structure and evaluated for in vitro antifungal and radical scavenging activity. The antifungal activity was carried out against five human pathogenic fungal strains such as Candida albicans, Fusarium oxysporum, Aspergillus flavus, Aspergillus niger and Cryptococcus neoformans. Most of the curcumin analogues displayed excellent to moderate fungicidal activity when compared with standard drug Miconazole. Also, synthesised analogues exhibited potential radical scavenging activity as compared with standard antioxidant Butylated hydroxyl toluene (BHT). Based on biological data, structure-activity relationship (SAR) were also discussed. Furthermore, in silico computational study was carried out to know binding interactions of synthesised analogues in the active sites of enzyme sterol 14α-demethylase (CYP51).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ahmad W, Kumolosasi E, Jantan I et al. (2014) Effects of novel diarylpentanoid analogues of curcumin on secretory phospholipase A2, cyclooxygenases, lipo-oxygenase, and microsomal prostaglandin e synthase-1. Chem Biol Drug Des 83:670–681

    CAS  PubMed  Google Scholar 

  • Anand P, Kunnumakkara AB, Newman RA et al. (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818

    CAS  PubMed  Google Scholar 

  • Anand P, Thomas SG, Kunnumakkara AB et al. (2008) Biological activities of curcumin and its analogues (Congeners) made by man and mother nature. Biochem Pharmacol 76:1590–1611

    CAS  PubMed  Google Scholar 

  • Bairwa K, Grover J, Kania M, Jachak SM (2014) Recent developments in chemistry and biology of curcumin analogues. RSC Adv 4:13946–13978

    CAS  Google Scholar 

  • Bodey GP (1992) Azole antifungal agents. Clin infect Dis 14:S161–S169

    PubMed  Google Scholar 

  • Buduma K, Chinde S, Dommati AK et al. (2016) Synthesis and evaluation of anticancer and antiobesity activity of 1-ethoxy carbonyl-3,5-bis (3′-indolyl methylene)-4-pyperidone analogs. Bioorg Med Chem Lett 26:1633–1638

    CAS  PubMed  Google Scholar 

  • Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phyther Res 14:323–328

    CAS  Google Scholar 

  • Carapina da Silva C, Pacheco BS, das Neves RN et al. (2019) Antiparasitic activity of synthetic curcumin monocarbonyl analogues against Trichomonas vaginalis. Biomed Pharmacother 111:367–377

    CAS  PubMed  Google Scholar 

  • Casey PJ (1992) Biochemistry of protein prenylation. J Lipid Res 33:1731–1740

    CAS  PubMed  Google Scholar 

  • Chen SY, Chen Y, Li YP et al. (2011) Design, synthesis, and biological evaluation of curcumin analogues as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem 19:5596–5604

    CAS  PubMed  Google Scholar 

  • Collins CH (1967) Microbiological methods. Butterworth-Heinemann, London

    Google Scholar 

  • Da Silva CR, De Andrade Neto JB, De Sousa, Campos R et al. (2014) Synergistic effect of the flavonoid catechin, quercetin, or epigallocatechin gallate with fluconazole induces apoptosis in Candida tropicalis resistant to fluconazole. Antimicrob Agents Chemother 58:1468–1478

    PubMed  PubMed Central  Google Scholar 

  • Deshmukh TR, Krishna VS, Sriram D et al. (2020) Synthesis and bioevaluation of α,α’-bis(1H-1,2,3-triazol-5-ylmethylene) ketones. Chem Pap 74:809–820

    CAS  Google Scholar 

  • Duraiswamy B, Mishra S, Subhashini V et al. (2009) Studies on the antimicrobial potential of Mahonia leschenaultii Takeda root and root bark. Indian J Pharm Sci 68:389

    Google Scholar 

  • Fine SA, Pulaski PD (1973) Reexamination of the Claisen-Schmidt condensation of phenylacetone with aromatic aldehydes. J Org Chem 38:1747–1749

    CAS  Google Scholar 

  • Friesner RA, Murphy RB, Repasky MP et al. (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    CAS  PubMed  Google Scholar 

  • Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809

    CAS  PubMed  Google Scholar 

  • Halgren TA, Murphy RB, Friesner RA et al. (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    CAS  PubMed  Google Scholar 

  • Hatcher H, Planalp R, Cho J et al. (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–1652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerru N, Singh P, Koorbanally N et al. (2017) Recent advances (2015–2016) in anticancer hybrids. Eur J Med Chem 142:179–212

    CAS  PubMed  Google Scholar 

  • Lal J, Gupta S, Thavaselvam D et al. (2016) Synthesis and pharmacological activity evaluation of curcumin derivatives. Chin Chem Lett 27:1067–1072

    CAS  Google Scholar 

  • Li Y, Zhang LP, Dai F et al. (2015) Hexamethoxylated monocarbonyl analogues of curcumin cause G2/M cell cycle arrest in NCI-H460 cells via Michael acceptor-dependent redox intervention. J Agric Food Chem 63:7731–7742

    CAS  PubMed  Google Scholar 

  • Marchiani A, Rozzo C, Fadda A et al. (2013) Curcumin and curcumin-like molecules: from spice to drugs. Curr Med Chem 21:204–222

    Google Scholar 

  • Martins CVB, Da Silva DL, Neres ATM et al. (2009) Curcumin as a promising antifungal of clinical interest. J Antimicrob Chemother 63:337–339

    CAS  PubMed  Google Scholar 

  • Masuda T, Maekawa T, Hidaka K, Bando H et al. (2001) Chemical studies on antioxidant mechanism of curcumin: analysis of oxidative coupling products from curcumin and linoleate. J Agric Food Chem 49:2539–2547

    CAS  PubMed  Google Scholar 

  • Nagargoje AA, Akolkar SV, Siddiqui MM et al. (2019) Synthesis and evaluation of pyrazole-incorporated monocarbonyl curcumin analogues as antiproliferative and antioxidant agents. J Chin Chem Soc 66:1658–1665

    CAS  Google Scholar 

  • Nagargoje AA, Akolkar SV, Siddiqui MM et al. (2020) Quinoline based monocarbonyl curcumin analogs as potential antifungal and antioxidant agents: synthesis, bioevaluation and molecular docking study. Chem Biodivers 17(2):e1900624

    CAS  PubMed  Google Scholar 

  • Pappas PG, Kauffman CA, Andes DR et al. (2015) Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases society of America. Clin Infect Dis 62:e1–e50

    PubMed  PubMed Central  Google Scholar 

  • Paul NK, Jha M, Bhullar KS et al. (2014) All trans 1-(3-arylacryloyl)-3,5-bis (pyridin-4-ylmethylene)piperidin-4-ones as curcumin-inspired antineoplastics. Eur J Med Chem 87:461–470

    CAS  PubMed  Google Scholar 

  • Praditya D, Kirchhoff L, Bruning J et al. (2019) Anti-infective properties of the golden spice curcumin. Front Microbiol 10:912

    PubMed  PubMed Central  Google Scholar 

  • Roman BI, De Ryck T, Verhasselt S et al. (2015) Further studies on anti-invasive chemotypes: an excursion from chalcones to curcuminoids. Bioorg Med Chem Lett 25:1021–1025

    CAS  PubMed  Google Scholar 

  • Sahu PK (2016a) Design, structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives/analogues. Eur J Med Chem 121:510–516

    CAS  PubMed  Google Scholar 

  • Sahu PK, Gupta SK et al. (2012) Synthesis and evaluation of antimicrobial activity of 4H-pyrimido[2,1-b] benzothiazole, pyrazole and benzylidene derivatives of curcumin. Eur J Med Chem 54:366–378

    CAS  PubMed  Google Scholar 

  • Sahu PK, Sahu PL, Agarwal DD et al. (2016b) Structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives. Bioorg Med Chem Lett 26:1342–1347

    CAS  PubMed  Google Scholar 

  • Sanabria-Rios DJ, Rivera-Torres Y, Rosario J et al. (2015) Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria. Bioorg Med Chem Lett 25:5067–5071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seufert R, Sedlacek L, Kahl B et al. (2018) Prevalence and characterization of azole-resistant Aspergillus fumigatus in patients with cystic fibrosis: a prospective multicentre study in Germany. J Antimicrob Chemother 73:2047–2053

    CAS  PubMed  Google Scholar 

  • Shehaan DJ, Hitchcock CA, Sibley CA et al. (1999) Current and emerging azole antifungal agents. Clin Microbiol Rev 12:40–79

    Google Scholar 

  • Shetty D, Kim YJ, Shim H, Snyder JP (2015) Eliminating the heart from the curcumin molecule: monocarbonyl curcumin mimics (MACs). Molecules 20:249–292

    Google Scholar 

  • Singh H, Kumar M, Nepali K et al. (2016) Triazole tethered C 5 -curcuminoid-coumarin based molecular hybrids as novel antitubulin agents: design, synthesis, biological investigation and docking studies. Eur J Med Chem 116:102–115

    CAS  PubMed  Google Scholar 

  • Sokmen M, Khan A (2016) The antioxidant activity of some curcuminoids and chalcones. Inflammopharmacol 24:81–86

    CAS  Google Scholar 

  • Subhedar DD, Shaikh MH, Nawale L et al. (2017) Quinolidene based monocarbonyl curcumin analogues as promising antimycobacterial agents: synthesis and molecular docking study. Bioorg Med Chem Lett 27:922–928

    CAS  PubMed  Google Scholar 

  • Tiwari A, Kumar S, Shivahare R et al. (2015) Chemotherapy of leishmaniasis part XIII: design and synthesis of novel heteroretinoid-bisbenzylidine ketone hybrids as antileishmanial agents. Bioorg Med Chem Lett 25:410–413

    CAS  PubMed  Google Scholar 

  • Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY et al. (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15:1867–1876

    CAS  PubMed  Google Scholar 

  • Wang ZSen, Chen LZ, Liu XH, Chen FH (2017) Diarylpentadienone derivatives (curcumin analogues): synthesis and anti-inflammatory activity. Bioorg Med Chem Lett 27:1803–1807

    CAS  PubMed  Google Scholar 

  • Zheng QT, Yang ZH, Yu LY et al. (2017) Synthesis and antioxidant activity of curcumin analogs. J Asian Nat Prod Res 19:489–503

    CAS  PubMed  Google Scholar 

  • Ziani N, Sid A, Demonceau A et al. (2013) Synthesis of new curcumin analogues from Claisen‐Schmidt condensation. Eur J Chem 4:146–148

    CAS  Google Scholar 

Download references

Acknowledgements

Author AAN is thankful to Principal, K. M. C. College Khopoli, for providing DST-FIST funded laboratory for this research work. Author SVA is very thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi for providing a research fellowship. The authors are also grateful for providing laboratory facilities to the Head, Department of Chemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad. We are also grateful to Schrodinger Inc. for GLIDE software to perform the molecular docking studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bapurao B. Shingate.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagargoje, A.A., Akolkar, S.V., Subhedar, D.D. et al. Propargylated monocarbonyl curcumin analogues: synthesis, bioevaluation and molecular docking study. Med Chem Res 29, 1902–1913 (2020). https://doi.org/10.1007/s00044-020-02611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02611-7

Keywords