Skip to main content
Log in

Fusaric acid and derivatives as novel antimicrobial agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The synthesis and screening of several fusaric acid (FA) and analogues against five common clinical pathogens (gram-positive and gram-negative) and in vitro hemolytic activity assay in human red blood cells, for the first time, were reported. The biological results reveal that FA and its analogues exhibited moderate antimicrobial activities. Compounds 25 and 7 showed growth inhibitory activity in gram-positive bacteria. Compounds 6 and 9 showed growth inhibitory activity in both gram-positive and gram-negative bacteria. None of the compounds induce hemolysis, which is potent for future drug development on this template. In addition, the structure–activity relationship and docking studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asano M, Hidaka H (1977) Relaxation ofisolated aorta of the rabbit by picolinic acids. Br J Pharmacol 61:263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf J, Murtaza S, Mughal E, Sadiq A (2017) Synthesis, biological activity and computationalstudies of novel azo-compounds. J Chem Soc Pak 39:65–71

    CAS  Google Scholar 

  • Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaricacid by Fusarium species. Appl Environ Microbiol 62:4039–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown G, Denning D, Gow N, Levitz S, Netea M, White T (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165rv13

    Article  PubMed  Google Scholar 

  • D’Alton A, Etherton B (1984) Effects of fusaric acid on tomato root hair membrane potentials and ATP levels. Plant Physiol 74:39–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Fakhouri W, Walker F, Armbruster W, Buchenauer H (2003) Detoxification offusaric acid by a nonpathogenic Colletotrichum sp. Physiological Mol Plant Pathol 63:263–269

    Article  CAS  Google Scholar 

  • Hitchcock SA, Pennington LD (2006) Structure-brain exposure relationships. J Med Chem 49:7559–7583

    Article  CAS  PubMed  Google Scholar 

  • Jahnsen RD, Sandberg-Schaal A, Vissing KJ, Nielsen HM, Frimodt-Møller N, Franzyk H (2014) Tailoring cytotoxicity of antimicrobial peptidomimetics with high activity against multidrug-resistant Escherichia Coli. J Med Chem 57:2864–2873

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zuo C, Deng G, Kuang R, Yang Q, Hu C, Sheng O, Zhang S, Ma L, Wei Y, Yang J, Liu S, Biswas MK, Viljoen A, Yi G (2013) Contamination ofbananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense. PLoS ONE 8:e70226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Díaz C, Rahjoo V, Sulyok M, Ghionna V, Martín-Vicente A, Capilla J, Di Pietro A, López-Berges MS (2018) Fusaric acidcontributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Plant Pathol 19:440–453

    Article  PubMed  Google Scholar 

  • Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S, Raventos D, Buskov S, Christensen B, De Maria L, Taboureau O, Yaver D, Elvig-Jorgensen SG, Sorensen MV, Christensen BE, Kjaerulff S, Frimodt-Moller N, Lehrer RI, Zasloff M, Kristensen H-H (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437:975–980

    Article  CAS  PubMed  Google Scholar 

  • Pajouhesh H, Lenz GR (2005) Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2:541–553

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan J, Chen Y, Huang Y, Tao Y, Wang J, Li Y, Peng Y, Dong T, Lai X, Lin Y (2011) Antimycobacterialactivity of fusaric acid from a mangrove endophyte and its metal complexes. Arch Pharm Res 34:1177–1181

    Article  CAS  PubMed  Google Scholar 

  • Qiu X, Janson CA, Smith WW, Green SM, McDevitt P, Johanson K, Carter P, Hibbs M, Lewis C, Chalker A, Fosberry A, Lalonde J, Berge J, Brown P, Houge-Frydrych CS, Jarvest RL (2001) Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potentand specific inhibitors. Protein Sci 10:2008–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rafique H, Saeed A, Murtaza S, Mughal E, Mumtaz A, Maalik A (2017) Facile synthesis and antibacterial investigation of new ethyl 4-[2-benzamido-4-methylthiazol-3(2H)-yl)] benzoates. Acta Pol Pharm 74:1119–1124

    CAS  Google Scholar 

  • Schmitt MA, Weisblum B, Gellman SH (2007) Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of alpha/beta-peptides. J Am Chem Soc 129:417–428

    Article  CAS  PubMed  Google Scholar 

  • Sharma BK, Singhal PC, Chugh KS (1978) Intravascular haemolysis and acute renal failure following potassium dichromate poisoning. Postgrad Med J 54:414–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speedand accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tung T, Jakobsen T, Dao T, Fuglsang A, Givskov M, Christensen S, Nielsen J (2017) Fusaric acid andanalogues as Gram-negative bacterial quorum sensing inhibitors. Eur J Med Chem 126:1011–1020

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Xiong Y, Ling N, Feng X, Zhong Z, Shen Q, Guo S (2013) Detection of thedynamic response of cucumber leaves to fusaric acid using thermal imaging. Plant Physiol Biochem 66:68–76

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Ma T, Liao M, Feng Y, Peng X, Li J, Li Z, Wu Y, Luo Q, Deng Y, Liang X, Zhu H (2011) Tyrosyl-tRNA synthetase inhibitors as antibacterial agents: synthesis, molecular docking and structure-activity relationship analysis of 3-aryl-4-arylaminofuran-2(5H)-ones. Eur J Med Chem 46:4904–4914

    Article  CAS  PubMed  Google Scholar 

  • Yabuta T, Kambe K, Hayashi T (1934) Fusaric acid, a new product of the bakanae fungus. Nippon Nogei Kagaku Kaishi 10:1059–1068

    Article  CAS  Google Scholar 

  • Yin E, Rakhmankulova M, Kucera K, Filho J, Portero CE, Narvaez-Trujillo A, Holley SA, Strobel SA (2015) Fusaric acid inducesa notochord malformation in zebrafish via copper chelation. Biometals 28:783–789

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is funded by The PHENIKAA University Foundation for Science and Technology Development. The authors would like to thank Prof. Niels Frimodt-Møller, Department of Clinical Microbiology, Rigshospitalet, Københavns Universitet, Denmark for hemolytic activity assay. We would like to thank Prof. John Nielsen, Department of Drug Design and Pharmacology, Københavns Universitet, Denmark for essential support at an early stage of the fusaric acid project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tung Truong Thanh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanh, T.T., Quoc, T.N. & Xuan, H.L. Fusaric acid and derivatives as novel antimicrobial agents. Med Chem Res 29, 1689–1696 (2020). https://doi.org/10.1007/s00044-020-02596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02596-3

Keywords

Navigation