Skip to main content
Log in

Antibacterial and antioxidant aryl-enclosed macrocyclic polyketide from intertidal macroalgae associated heterotrophic bacterium Shewanella algae

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Previously unreported aryl-enclosed 12-membered macrocyclic polyketide characterised as 2′-[(8-ethyl-8-methyl-2,5-dioxo-1-oxacyclododecanyl)methoxy]-methyl benzoate, was identified from the organic extract of Shewanella algae, a heterotrophic gamma proteobacterium, isolated from an intertidal marine macroalgae Hypnea valentiae. The titled macrocyclic polyketide displayed potential antibacterial activity (minimum inhibitory concentration 3.75 µg/mL) compared to that exhibited by chloramphenicol (6.25 µg/mL). Potent antioxidant activity of the studied compound was characterised by its greater scavenging effects on 2,2-diphenyl-1-picrylhydrazyl radical and 2,2′-azino-bis-3-ethylbenzothiozoline-6-sulfonic acid (IC50 0.59 and 0.53 mg/mL, respectively) compared with standard, α-tocopherol (IC50 > 0.65 mg/mL). In silico molecular docking studies of the polyketide with the penicillin binding protein active sites encoded in methicillin resistant Staphylococcus aureus core genome displayed lesser binding energy of −10.31 kcal/mol, which could be correlated with its in vitro antibacterial activities. Structure-activity correlation studies demonstrated the direct relationship of electronic and optimum hydrophobic properties of the macrocyclic polyketide with its bioactivities. Therefore, the presently studied aryl-enclosed macrocyclic compound could be utilised as potent antioxidant and antibacterial pharmacophore in the medicinal formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barbieri E, Barry K, Child A, Wainwright N (1997) Antimicrobial activity in the microbial community of the accessory nidamental gland and egg cases of Loligo pealei (Cephalopoda: Loliginidae). Biol Bull 193:275–276

    Article  CAS  Google Scholar 

  • Ben Ali AI, El Bour M, Ktari L, Bolhuis H, Ahmed M, Boudabbous A, Stal LJ (2012) Jania rubens associated bacteria: molecular identification and antimicrobial activity. J Appl Phycol 24:525–534

    Article  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2013) Marine natural products. Nat Prod Rep 30:237–323

    Article  CAS  Google Scholar 

  • Cao F, Yang Q, Shao C-L, Kong C-J, Zheng J-J, Liu Y-F, Wang C-Y (2015) Bioactive 7-oxabicyclic [6.3.0] lactam and 12-membered macrolides from a gorgonian-derived Cladosporium sp. fungus. Mar Drugs 13:4171–4178

    Article  CAS  Google Scholar 

  • Chakraborty K, Thilakan B, Kizhakkekalm VK (2017a) Antibacterial aryl-crowned polyketide from Bacillus subtilis associated with seaweed Anthophycus longifolius. J Appl Microbiol 124:108–125

    Article  Google Scholar 

  • Chakraborty K, Thilakan B, Raola VK (2014) Polyketide family of novel antibacterial 7-O-methyl-5′-hydroxy-3′-heptenoate-macrolactin from seaweed-associated Bacillus subtilis MTCC 10403. J Agric Food Chem 62:12194–12208

    Article  CAS  Google Scholar 

  • Chakraborty K, Thilakan B, Raola VK (2017c) Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403. Phytochemistry 142:112–125

    Article  CAS  Google Scholar 

  • Chakraborty K, Thilakan B, Raola VK, Joy M (2017b) Antibacterial polyketides from Bacillus amyloliquefaciens associated with edible red seaweed Laurenciae papillosa. Food Chem 218:427–434

    Article  CAS  Google Scholar 

  • Chew YL, Lim YY, Omar M, Khoo KS (2008) Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT-Food Sci Technol 41:1067–1072

    Article  CAS  Google Scholar 

  • Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109

    Article  CAS  Google Scholar 

  • Driggers EM, Hale SP, Lee J, Terrett NK (2008) The exploration of macrocycles for drug discovery an underexploited structural class. Nat Rev Drug Discov 7(7):608–624

    Article  CAS  Google Scholar 

  • Du YL, Alkhalaf LM, Ryan KS (2015) In vitro reconstitution of indolmycin biosynthesis reveals the molecular basis of oxazolinone assembly. Proc Natl Acad Sci USA 112:2717–2722

    Article  CAS  Google Scholar 

  • Epel D (2002) Frontiers in squid reproduction: prospecting for new antibiotics. California Sea Grant College Program Research Profiles Report CSG-MP-02- 001, University of California, San Diego

    Google Scholar 

  • Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237–258

    Article  CAS  Google Scholar 

  • Horta A, Pinteus S, Alves C, Fino N, Silva J, Fernandez S, Rodrigues A, Pedrosa R (2014) Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria. Mar Drugs 12:1676–1689

    Article  CAS  Google Scholar 

  • Hu L, Zhu H, Li L, Huang J, Sun W, Liu J, Li H, Luo Z, Wang J, Xue Y, Zhang Y, Zhang Y (2016) (±)-Japonones A and B, two pairs of new enantiomers with anti-KSHV activities from Hypericum japonicum. Sci Rep 6:27588

  • Ivanova EP, Sawabe T, Zhukova NV, Gorshkova NM, Nedashkovskaya OI, Hayashi K, Frolova GM, Sergeev AF, Pavel KG, Mikhailov VV, Nicolau DV (2003) Occurrence and diversity of mesophilic Shewanella strains isolated from the North-West Pacific Ocean. Syst Appl Microbiol 26:293–301

    Article  CAS  Google Scholar 

  • Kanagasabhapathy M, Sasaki H, Nagata S (2008) Phylogenetic identification of epibiotic bacteria possessing antimicrobial activities isolated from red algal species of Japan. World J Microbiol Biotechnol 24:2315–2321

    Article  CAS  Google Scholar 

  • Karpiński TM (2019) Marine macrolides with antibacterial and/or antifungal activity. Mar Drugs 17:241

    Article  Google Scholar 

  • Kennedy J, Baker P, Piper C, Cotter PD, Walsh M, Mooij MJ, Bourke MB, Rea MC, O’Connor PM, Ross RP, Hill C, O’Gara F, Marchesi JR, Dobson AD (2009) Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters. Mar Biotechnol 11:384–396

    Article  CAS  Google Scholar 

  • Kizhakkekalam VK, Chakraborty K (2019) Pharmacological properties of marine macroalgae-associated heterotrophic bacteria. Arch Microbiol 201:505–518

    Article  CAS  Google Scholar 

  • Lang G, Mitova MI, Ellis G, van der Sar S, Phipps RK, Blunt JW, Cummings NJ, Cole AL, Munro MH (2006) Bioactivity profiling using HPLC/microtiter-plate analysis: application to a New Zealand marine alga-derived fungus, Gliocladium sp. J Nat Prod 69:621–624

    Article  CAS  Google Scholar 

  • Leonardo M, Moser D, Barbieri E, Brantner C, MacGregor BJ, Paster BJ, Stackebrandt E, Nealson KH (1999) Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei. Int J Syst Bacteriol 49:1341–1351

    Article  CAS  Google Scholar 

  • Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861

    Article  CAS  Google Scholar 

  • MacDonell M, Colwell R (1985) Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–82

    Article  CAS  Google Scholar 

  • Marsault E, Peterson ML (2011) Macrocycles are great cycles: applications, opportunities, and challenges of synthetic macrocycles in drug discovery. J Med Chem 54(7):1961–2004

    Article  CAS  Google Scholar 

  • Nagao T, Adachi K, Sakai M, Nishijima M, Sano H (2001) Novel macrolactins as antibiotic lactones from a marine bacterium. J Antibiot 54:333–339

    Article  CAS  Google Scholar 

  • National Committee for Clinical Laboratory Standards (2003) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard M7-A6. National Committee for Clinical Laboratory Standards, Wayne, PA

    Google Scholar 

  • Penesyan A, Marshall-Jones Z, Holmstrom C, Kjelleberg S, Egan S (2009) Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMS Microbiol Ecol 69(1):113–124

    Article  CAS  Google Scholar 

  • Ridley CE (2008) Hybridization and the evolution of invasiveness in the California wild radish (Raphanus sativus), botany and plant sciences. University of California Riverside, Riverside, CA

  • Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760

    Article  CAS  Google Scholar 

  • Shelest E, Heimerl N, Fichtner M, Sasso S (2015) Multimodular type I polyketide synthases in algae evolve by module duplications and displacement of AT domains in trans. BMC Genomics 16:1015

    Article  Google Scholar 

  • Shigemori H, Kasai Y, Komatsu K, Tsuda M, Mikami Y, Kobayashi J (2004) Sporiolides A and B, new cytotoxic twelve-membered macrolides from a marine-derived fungus Cladosporium species. Mar Drugs 2:164–169

    Article  CAS  Google Scholar 

  • Takahashi C, Takada T, Yamada T, Minoura K, Uchida K, Matsumura E, Numata A (1994) Halichomycin, a new class of potent cytotoxic macrolide produced by an actinomycete from a marine fish. Tetrahedron Lett 35:5013–5014

    Article  CAS  Google Scholar 

  • Thilakan B, Chakraborty K, Chakraborty RD (2017) Antimicrobial properties of cultivable bacteria associated with seaweeds in Gulf of Mannar of South East Coast of India. Can J Microbiol 62:668–681

    Article  Google Scholar 

  • Thornburg CC, Zabriskie TM, McPhail KL (2010) Deep-sea hydrothermal vents: potential hot spots for natural products discovery? J Nat Prod 73(3):489–499

    Article  CAS  Google Scholar 

  • Timmermans ML, Paudel YP, Ross AC (2017) Investigating the biosynthesis of natural products from marine proteobacteria: a survey of molecules and strategies. Mar Drugs 15:235

  • Weber T, Welzel K, Pelzer S, Vente A, Wohlleben W (2003) Exploiting the genetic potential of polyketide producing Streptomycetes. J Biotechnol 106:221–232

    Article  CAS  Google Scholar 

  • Wiese J, Thiel V, Nagel K, Staufenberger T, Imhoff JF (2009) Diversity of antibiotic active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Mar Biotechnol 11:287–300

    Article  CAS  Google Scholar 

  • Wojdylo A, Oszmianski J, Czemerys R (2007) Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem 105:940–949

    Article  CAS  Google Scholar 

  • Xie LW, Ouyang YC, Zou K, Wang GH, Chen MJ, Sun HM, Dai SK, Li X (2009) Isolation and difference in anti Staphylococcus aureus bioactivity of curvularin derivates from fungus Eupenicillum sp. Appl Biochem Biotechnol 159:284–293

    Article  CAS  Google Scholar 

  • Xu J, Jiang C-S, Zhang Z-L, Ma W-Q, Guo Y-W (2014) Recent progress regarding the bioactivities, biosynthesis and synthesis of naturally occurring resorcinolic macrolides. Acta Pharmacol Sin 35:316–330

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding under Kerala State Council for Science, Technology and Environment (Grant No. 040/FSHP-LSS/2014/KSCSTE). The authors are thankful to Indian Council of Agricultural Research, New Delhi for providing facilities to carry out the work. The authors thank the Director, Central Marine Fisheries Research Institute and Dean, Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology for support. Thanks are due to the Head, Marine Biotechnology Division, Central Marine Fisheries Research Institute for facilitating the research activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kajal Chakraborty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors are contributed equally: Vinaya Kizhakkepatt Kizhakkekalam, Kajal Chakraborty

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kizhakkepatt Kizhakkekalam, V., Chakraborty, K. & Joy, M. Antibacterial and antioxidant aryl-enclosed macrocyclic polyketide from intertidal macroalgae associated heterotrophic bacterium Shewanella algae. Med Chem Res 29, 145–155 (2020). https://doi.org/10.1007/s00044-019-02468-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-019-02468-5

Keywords

Navigation