Skip to main content

Advertisement

Log in

Design and synthesis of novel 4-hydrazone functionalized/1,2,4-triazole fused pyrido[2,3-d]pyrimidine derivatives, their evaluation for antifungal activity and docking studies

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of novel 2-substituted 4-hydrazone functionalized pyrido[2,3-d]pyrimidine (8af and 9ae) and 1,2,4-triazole fused pyrido[2,3-d]pyrimidine derivatives (10af and 11ae) were prepared starting from ethyl 2-amino-6-(trifluoromethyl)nicotinate 3 via acylation, cyclization, chlorination, hydrazine reaction, hydrazone formation followed by intramolecular cyclization. All the final products were screened against various Candida strains for determining the antifungal activity, minimum fungicidal concentration and inhibition of ergosterol biosynthesis. Among the screened, compounds 8c, 8f, 9c, 10f, 11d and 11e were identified as promising antifungal agents. From a mechanistic perspective, the concomitant treatment of 10f, 11d and 11e on different Candida strains showed inhibition of ergosterol biosynthesis, which also revealed the possible antifungal action of these compounds on the ergosterol biosynthetic pathway. The binding mode of active compounds by docking studies showed that they fit well into the active site cavity of target protein. Further, the SAR and molecular docking studies data presumed that the presence of fluoro, trifluoromethyl, bromo and nitro groups on phenyl and furyl rings in pyrido[2,3-d]pyrimidine were found to be crucial to promote antifungal activity. All the strains for Miconazole a control drug showed MIC values equal to 3.9 μg/mL. Lipinski’s parameters of all compounds are within the acceptable range defined for human use thereby indicating their potential as drug-like molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adib M, Ayashi N, Heidari F, Mirzaei P (2016) Reaction between 4-nitro-1,3-diarylbutan-1-ones and ammonium acetate in the presence of morpholine and sulfur: an efficient synthesis of 2,4-Diarylpyrroles. Synlett 27(11):1738–1742

    Article  CAS  Google Scholar 

  • Adib M, Sheikhi E, Yazzaf R, Bijanzadeh HR, Mirzaei P (2016) An efficient, three-component synthesis of isoindolin-1-one-3-phosphonates under mild and solvent-free conditions. Tetrahedron Lett 57(8):841–844

    Article  CAS  Google Scholar 

  • Adib M, Yasaei Z, Mirzaei P (2016) A one-pot, multicomponent synthesis of 5′-amino-2,2′-dioxospiro[indoline-3,3′-pyrrole]-4′-carbonitriles. Synlett 27(03):383–386

    Article  Google Scholar 

  • Adib M, Zainali M, Kim I (2016) An efficient three-component synthesis of benzimidazo[1,2-a]-quinoline-6-carbonitriles. Synlett 27:1844–1847

    Article  CAS  Google Scholar 

  • Albengres E, Louet H, Tillement JP (1998) Drug interactions of systemic antifungal agents. Drug Safety 18(2):83–97

    Article  CAS  PubMed  Google Scholar 

  • Al Mubarak S, Robert AA, Baskaradoss JK, Al-Joman K, Al Sohail A, Alsuwyed A, Ciancio S (2013) The prevalence of oral Candida infections in periodontitis patients with type 2 diabetes mellitus. J Infect Public Health 6(4):296–301

    Article  PubMed  Google Scholar 

  • Bazgir A, Khanaposhtani MM, Soorki AA (2008) One-pot synthesis and antibacterial activities of pyrazolo[4’,3’:5,6]pyrido[2,3-d]pyrimidine-dione derivatives. Bioorg Med Chem Lett 18(21):5800–5803

    Article  CAS  PubMed  Google Scholar 

  • Bennett JE (1977) Flucytosine. Ann Intern Med 86(3):319–322

    Article  Google Scholar 

  • Bhat KS, Poojari B, Prasad DJ, Naik P, Holla BS (2009) Synthesis and antitumor activity studies of some new fused 1,2,4-triazole derivatives carrying 2,4-dichloro-5-fluorophenyl moiety. Eur J Med Chem 44:5066–5070

    Article  CAS  PubMed  Google Scholar 

  • Brand A (2012) Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol 2012:517529. https://doi.org/10.1155/2012/517529

    Article  PubMed  Google Scholar 

  • Breivik ON, Owades JL (1957) Yeast analysis, spectrophotometric semimicro determination of ergosterol in yeast. J Agric Food Chem 5(5):360–363

    Article  CAS  Google Scholar 

  • CLSI Clinical and Laboratory Standards Institute (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. CLSI documents M27-S3. Wayne, PA, USA.

  • CLSI (2017) Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard. Document M27, 4th Ed., Clinical and Laboratory Standards Institute, Wayne, PA.

  • Cordeu L, Cubedo E, Bandres E, Rebollo A, Saenz X, Chozas H, Victoria Dominguez M, Echeverria M, Mendivil B, Sanmartin C, Palop JA, Font M, Garcia-Foncillas J (2007) Biological profile of new apoptotic agents based on 2,4-pyrido[2,3-d]pyrimidine derivatives. Bioorg Med Chem 15(4):1659–1669

    Article  CAS  PubMed  Google Scholar 

  • Denning DW (2002) Echinocandins: a new class of antifungal. J Antimicrob Chemother 49(6):889–891

    Article  CAS  PubMed  Google Scholar 

  • Espinel-Ingroff A (1998) Comparison of in vitro activities of the new triazole SCH56592 and the echinocandins MK-0991 (L-743,872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeasts. J Clin Microbiol 36(10):2950–2956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezabadi IR, Camoutsis C, Zoumpoulakis P, Geronikaki A, Sokovic M, Glamocilija J, Ciric A (2008) Sulfonamide-1,2,4-triazole derivatives as antifungal and antibacterial agents: synthesis, biological evaluation, lipophilicity, and conformational studies. Bioorg Med Chem 16:1150–1161

    Article  CAS  PubMed  Google Scholar 

  • Ghannoum MA, Rice LB (1999) Antifungal agents: Mode of action, mechanisms of resistance, correlation of these mechanisms and bacterial resistance. Clin Microbiol Rev 12:501–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs WJ, Drew RH, Perfect JR (2005) Liposomal amphotericin B: clinical experience and perspectives. Expert Rev Anti Infect Ther 3(2):167–181

    Article  CAS  PubMed  Google Scholar 

  • Grant SM, Clissold SP (1990) Fluconazole: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in superficial and systemic mycoses. Drugs 39(6):877–916

    Article  CAS  PubMed  Google Scholar 

  • Hoesley C, Dismukes WE (1997) Overview of oral azole drugs as systemic antifungal therapy. Semin Resp. Crit Care Med 18(03):301–309

    Google Scholar 

  • Holla BS, Veerendra B, Shivananda MK, Poojary B (2003) Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur J Med Chem 38:759–767

    Article  CAS  Google Scholar 

  • Jayaram B, Singh T, Mukherjee G, Mathur A, Shekhar S, Shekhar V (2012) Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics 13(Suppl 17):S7

    Article  PubMed  PubMed Central  Google Scholar 

  • Jessup CJ, Warner J, Isham N, Hasan I, Ghannoum MA (2000) Antifungal susceptibility testing of dermatophytes: establishing a medium for inducing conidial growth and evaluation of susceptibility of clinical isolates. J Clin Microbiol 38(1):341–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jitender Dev G, Poornachandra Y, Ratnakar Reddy K, Naresh Kumar R, Ravikumar N, Krishna Swaroop D, Ranjithreddy P, Shravan Kumar G, Nanubolu JB, Ganesh Kumar C, Narsaiah B (2017) Synthesis of novel pyrazolo[3,4-b]quinolinyl acetamide analogs, their evaluation for antimicrobial and anticancer activities, validation by molecular modeling and COMFA analysis. Eur J Med Chem 130:223–239

    Article  CAS  Google Scholar 

  • Johnson RH, Einstein HE (2007) Amphotericin B and coccidioidomycosis. Ann N Y Acad Sci 1111:434–441

    Article  CAS  PubMed  Google Scholar 

  • Kamal A, Rahim A, Riyaz S, Poornachandra Y, Moku B, Kumar CG, Hussaini SM, Sridha B, Machiraju PK (2015) Regioselective synthesis, antimicrobial evaluation and theoretical studies of 2-styryl quinolines. Org Biomol Chem 13:1347–1357

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Dwivedi AR, Kaur B, Kumar V (2016) Recent developments on 1,2,4-triazole nucleus in anticancer compounds: a review. Anticancer Agents Med Chem 16:465–489

    Article  CAS  PubMed  Google Scholar 

  • Keating G, Figgitt D (2003) Caspofungin: a review of its use in oesophageal candidiasis, invasive candidiasis and invasive aspergillosis. Drugs 63:2235–2263

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341

    Article  CAS  PubMed  Google Scholar 

  • Malagu K, Duggan H, Menear K, Hummersone M, Gomez S, Bailey C, Edwards P, Drzewiecki J, Leroux F, Quesada MJ, Hermann G, Maine S, Martin N, Smith G, Pass M (2009) The discovery and optimisation of pyrido[2,3-d]pyrimidine-2,4-diamines as potent and selective inhibitors of mTOR kinase. Bioorg Med Chem Lett. 19(20):5950–5953

    Article  CAS  PubMed  Google Scholar 

  • Naresh Kumar R, Jitender Dev G, Ravi Kumar N, Krishna Swaroop D, Debanjan B, Bharat G, Narsaiah B, Nishanth Jain S, Gangagni Rao A (2016) Synthesis of novel triazole/isoxazole functionalized 7-(trifluoromethyl)pyrido[2,3-d]pyrimidine derivatives as promising anticancer and antibacterial agents. Bioorg Med Chem Lett 26(12):2927–2930

    Article  CAS  PubMed  Google Scholar 

  • Nasr MN, Gineinah MM (2002) Pyrido[2,3-d]pyrimidines and pyrimido[5’,4’:5, 6]pyrido[2,3-d]pyrimidines as new antiviral agents: synthesis and biological activity. Arch Pharm 335(6):289–295

    Article  CAS  Google Scholar 

  • Nekkanti S, Tokala R, Shankaraiah N (2017) Targeting DNA minor groove by hybrid molecules as anticancer agents. Curr Med Chem 24(26):2887–2907

    Article  CAS  PubMed  Google Scholar 

  • Neofytos D, Lu K, Hatfield-Seung A, Blackford A, Marr KA, Treadway S, Ostrander D, Nussenblatt V, Karp J (2013) Epidemiology, outcomes, and risk factors of invasive fungal infections in adult patients with acute myelogenous leukemia after induction chemotherapy. Diagn Microbiol Infect Dis 75(2):144–149

    Article  PubMed  Google Scholar 

  • Oakley KL, Moore CB, Denning DW (1998) In vitro activity of the echinocandin antifungal agent LY303,366 in comparison with itraconazole and amphotericin B against Aspergillus spp. Antimicrob Agents Chemother 42(10):2726–2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onnis V, Cocco TMC, Fadda R, Congiu C (2009) Synthesis and evaluation of anticancer activity of 2-arylamino-6-trifluoromethyl-3-(hydrazonocarbonyl)pyridines. Bioorg Med Chem 17(17):6158–6165

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir A, Turan-Zitouni G, Kaplancikli ZA, Chevallet P (2007) Synthesis of some 4-arylidenamino-4H-1,2,4-triazole-3-thiols and their antituberculosis activity. J Enzyme Inhib Med Chem 22:511–516

    Article  PubMed  CAS  Google Scholar 

  • Person K, Kontoyiannis DP, Alexander BD (2011) Fungal infections in transplant and oncology patients. Hematol Oncol Clin N Am 25:193–213

    Article  Google Scholar 

  • Pigaew R, Prachayasittikul V, Mandi P, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V (2015) synthesis and molecular docking of 1,2,3-triazole-based sulfonamides as aromatase inhibitors. Bioorg Med Chem 23:3472–3480

    Article  CAS  Google Scholar 

  • Roma G, Grossi G, Braccio MD, Piras D, Ballabeni V, Tognolini M, Bertoni S, Barocelli E (2008) 1,8-Naphthyridines VII. New substituted 5-amino[1,2,4]triazolo[4,3-a][1,8] naphthyridine-6-carboxamides and their isosteric analogues, exhibiting notable anti-inflammatory and/or analgesic activities, but no acute gastrolesivity. Eur J Med Chem 43(8):1665–1680

    Article  CAS  PubMed  Google Scholar 

  • Romani L (2004) Immunity to fungal Infections. Nat Rev Immunol 4(1):1–23

    Article  PubMed  CAS  Google Scholar 

  • Ryder N, Favre B (1997) Antifungal activity and mechanism of action of terbinafine. Rev. Contemp. Pharmacother. 8:275–287

    CAS  Google Scholar 

  • Sahu JK, Ganguly S, Kaushik A (2013) Triazoles: a valuable insight into recent developments and biological activities. Chin J Nat Med 11(5):456–465

    CAS  PubMed  Google Scholar 

  • Sinha R, Sharma P, Kumar P, Kuchhal V (2012) Terbinafine-induced taste impairment - report of two cases. J. Pak Assoc Dermatol 22(4):363–365

    Google Scholar 

  • Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 11:3315–3321

    Article  CAS  Google Scholar 

  • Tillotson J, Tillotson GS (2015) the regulatory pathway for antifungal drugs. Clin Infect Dis 61:678–683

    Article  CAS  Google Scholar 

  • Tsai PW, Chen YT, Hsu PC, Lan CY (2013) Study of Candida albicans and its interactions with the host. BioMedicine 3:51–64

    Article  Google Scholar 

  • Turan-Zitouni G, Kaplancikli ZA, Yildiz MT, Chevallet P, Kaya D (2005) synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl) acetamide]-thio-4H-1,2,4-triazole derivatives. Eur J Med Chem 40:607–613

    Article  CAS  PubMed  Google Scholar 

  • VaanderWaal SN, Harvey PJ, McNamara DJ, Repine JT, Keller PR, Quin III J, Booth RJ, Elliott WL, Dobrusin EM, Fry DW, Toogood PL (2005) Pyrido[2,3-d]pyrimidin-7-ones as specific inhibitors of cyclin-dependent kinase 4. J Med Chem 48(7):2371–2387

    Article  CAS  Google Scholar 

  • Vandeputte P, Ferrari S, Coste AT (2012) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol. 2012:713687. https://doi.org/10.1155/2012/713687

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yang J, Yuan M, Xue L, Tian Hli C, Wang X, Liu J, Zhang Z (2017) Synthesis and antiproliferative activity of a series of novel 6-substituted pyrido[3,2-d]pyrimidines as potential nonclassical lipophilic antifolates targeting dihydrofolate reductase. Eur J Med Chem 128:88–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N.R.A. is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for the award of Senior Research Fellowship. N.R.A., N.R.K., K.S. and T.G. are also thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing financial assistance in the form of Research Fellowship and contingency grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narsaiah Banda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appna, N.R., Nagiri, R.K., Korupolu, R.B. et al. Design and synthesis of novel 4-hydrazone functionalized/1,2,4-triazole fused pyrido[2,3-d]pyrimidine derivatives, their evaluation for antifungal activity and docking studies. Med Chem Res 28, 1509–1528 (2019). https://doi.org/10.1007/s00044-019-02390-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-019-02390-w

Keywords

Navigation