Skip to main content
Log in

Convenient one-pot synthesis of resin acid Mannich bases as novel anticancer and antifungal agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The one-pot three-component CuCl-catalyzed aminomethylation of the abietane diterpenoid propargyl esters by formaldehyde and secondary amines was studied for the first time. The novel diethylamino, pyrrolidine, and morpholine-substituted butynyl derivatives of abietic, dehydroabietic, levopimaric, maleopimaric and dihydroquinopimaric acids were obtained. It was shown that synthesis of the abietic acid propargyl ester by the reaction of the abietane diterpenoid with oxalyl chloride and dimethylformamide is accompanied by the formylation of the ring B at the C-7 position and the dehydrogenation of the ring C to form the dehydroabietic acid ester. The cytotoxic, antibacterial and fungicidal activities of the synthesized compounds were studied in vitro. The experimental results showed that the most promising compound was 7-formyl abietic derivative Mannich base with a pyrrolidine substituent, with an MIC of 16 μg/ml against methicillin-resistant S. aureus ATCC 43300, and 8 μg/ml against C. albicans ATCC 90028 and 4 μg/ml against C. neoformans H99; ATCC 208821. The dihydroquinopimaric acid derivative with the diethylamine fragment showed the greatest antiproliferative activity towards twelve tumor cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  • Abdulla MM (2008) Anti-inflammatory activity of heterocyclic systems using abietic acid as starting material. Mon Chem 139:697–705

    Article  CAS  Google Scholar 

  • Aboraia AS, Abdel-Rahman HM, Mahfouz NM, El-Gendy MA (2006) Novel 5-(2-hydroxyphenyl)-3-substituted-2,3-dihydro-1,3,4-oxadiazole-2-thione derivatives: promising anticancer agents. Bioorg Med Chem 14:1236–1246

    Article  PubMed  CAS  Google Scholar 

  • Ali MA, Shaharyar M (2007) Oxadiazole mannich bases: synthesis and antimycobacterial activity. Bioorg Med Chem Lett 17:3314–3316

    Article  PubMed  CAS  Google Scholar 

  • Arend M, Westermann B, Risch N (1998) Modern variants of the Mannich reaction. Angew Chem Int Ed 37:1044–1070

    Article  Google Scholar 

  • Batuta S, Md. Ali A, Chatterjee A, Md. Alam N, Das S, Mandal D, Ara Begum N (2016) Understanding the efficacy of N,N-dimethylformamide and oxalyl chloride combination as chemoselective O-formylating agent: an unified experimental and theoretical study. Synth Commun 46:692–700

    Article  CAS  Google Scholar 

  • Boyd MR, Paul KD (1995) Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Res Rep 34:91–109

    Article  CAS  Google Scholar 

  • Gowda R, Inamdar GS, Kuzu O, Dinavahi SS, Krzeminski J, Battu MB, Voleti SR, Sh Amin, Robertson GP (2017) Identifying the structure-activity relationship of leelamine necessary for inhibiting intracellular cholesterol transport. Oncotarget 8:28260–28277

    Article  PubMed  PubMed Central  Google Scholar 

  • Grever MR, Schepartz SA, Chabner BA (1992) The National Cancer Institute: cancer drug discovery and development program. Semin Oncol 19:622–638

    PubMed  CAS  Google Scholar 

  • Gu W, Qiao Ch, Wang S-F, Hao Y, Ting-Ting M (2014) Synthesis and biological evaluation of novel N-substituted 1H-dibenzo[a,c]carbazole derivatives of dehydroabietic acid as potential antimicrobial agents. Bioorg Med Chem Lett 24:328–331

    Article  PubMed  CAS  Google Scholar 

  • Herz W, Blackstone RC, Nair MG (1967) Resin acids. XI. Configuration and transformations of the levopimaric acid-p-benzoquinone adduct. J Org Chem 32:2992–2998

    Article  CAS  Google Scholar 

  • Herz W, Nair MG (1969) Resin acids. XIX. Structure and stereochemistry of adducts of levopimaric acid with cyclopentenone and 1-cyclopentene-3,5-dione. Favorskii reaction of an enedione epoxide. J Org Chem 34:4016–4023

    Article  CAS  Google Scholar 

  • Hou W, Zhang G, Zhi Luo, Li Di, Ruan H, Ruan BH, Su L, Xu H (2017) Identification of a diverse synthetic abietane diterpenoid library and insight into the structure-activity relationships for antibacterial activity. Bioorg Med Chem Lett 27:5382–5386

    Article  PubMed  CAS  Google Scholar 

  • Justino GAC, Correia CF, Mira L, Dos Santos RMB, Simones JAM, Silva AM, Santos CL, Gigante BR (2006) Antioxidant activity of a catechol derived from abietic acid. J Agric Food Chem 54:342–348

    Article  PubMed  CAS  Google Scholar 

  • Kazakova OB, Smirnova IE, Tkhi Tkhu Do H, Nguen TT, Apryshko GN, Zhukova OS, Medvedeva NI, Nazyrov TI, Tret’yakova EV, Chudov IV, Ismagilova AF, Suponitsky KYu, Kazakov DV, Safarov FE, Tolstikov GA (2013) Synthesis, structure, and pharmacological activity of (7R,8S)-Epoxy-(13R,17R)-trioxolane abietic acid. Russ J Bioorg Chem 39:202–210

    Article  CAS  Google Scholar 

  • Kazakova OB, Tretyakova EV, Kukovinets OS, Abdrakhmanova AR, Kabalnova NN, Kazakov DV, Tolstikov GA, Gubaidullin AT (2010a) Synthesis of nontrivial quinopimaric acid derivatives by oxidation with dimethyldioxirane Tetrahedron Lett 51:1832–1835

  • Kazakova OB, Tret’yakova EV, Smirnova IE, Spirikhin LV, Tolstikov GA, Chudov IV, Bazekin GV, Ismagilova AF (2010b) The synthesis and anti-inflammatory activity of quinopimaric acid derivatives Russ J Bioorg Chem 36:257–262

  • Keeling CI, Bohlmann J (2006) Diterpene resin acids in conifers. Phytochem 67:2415–2423

    Article  CAS  Google Scholar 

  • Kotecka BM, Barlin GB, Edstein MD, Rieckmann KH (1997) New quinoline di-Mannich base compounds with greater antimalarial activity than chloroquine, amodiaquine, or pyronaridine. Antimicrob Agents Chemother 41:1369–1374

    PubMed  PubMed Central  CAS  Google Scholar 

  • Monks A, Scudiero D, Skehan P, Shoemaker R, Paull KD, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd MJ (1991) Feasibility of a highflux anticancer drug screen using a diverse panel of cultured human tumor cell lines. Nat Cancer Inst 183:757–766

    Article  Google Scholar 

  • Nong W, Chen X, Liang J, Wang L, Zh Tong, Huang K, Wu R, Xie Q, Jia Y, Li K (2014) Isolation and characterization of abietic acid. Adv Mat Res 887-888:551–556

    CAS  Google Scholar 

  • Pirttimaa M, Nasereddin A, Kopelyanskiy D, Kaiser M, Yli-Kauhaluoma J, Oksman-Caldentey K-M, Brun R, Jaffe ChL, Moreira VM, Alakurtti S (2016) Abietane-type diterpenoid amides with highly potent and selective activity against Leishmania donovani and Trypanosoma cruzi. J Nat Prod 79:362–368

    Article  PubMed  CAS  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JR, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Sriram D, Banerjee D, Yogeeshwari PJ (2009) Mannich bases: synthesis, anti-HIV and antitubercular activities. J Enzym Inhib Med Chem 24:1–5

    Article  CAS  Google Scholar 

  • Tapia R, Guardia JJ, Alvarez E, Haidöur A, Ramos JM, Alvarez-Manzaneda R, Chahboun R, Alvarez-Manzaneda E (2012) General Access to Taiwaniaquinoids Based on a Hypothetical Abietane C7-C8 Cleavage Biogenetic Pathway. J Org Chem 77: 573–584

  • Tolstikov GA, Tolstikova TG, Shul’ts EE, Tolstikov SE, Khvostov MV (2011) Smolyanye kisloty khvoinykh Rossii. Khimiya, farmakologiya (Resin acids of conifers of Russia: chemistry and pharmacology). Akad. Izd. GEO, Novosibirsk, p 395–989

    Google Scholar 

  • Tramontini M, Angiolini L (1994) Mannich-bases, chemistry and uses. CRC, Boca Raton, FL

    Google Scholar 

  • Tret’yakova EV, Smirnova IE, Kazakova OB, Yavorskaya NP, Golubeva IS, Zhukova OS, Pugacheva RB, Apryshko GN, Poroikov VV (2014) Synthesis and anticancer activity of quinopimaric and maleopimaric acid’s derivatives. Bioorg Med Chem 22:6481–6489

    Article  CAS  Google Scholar 

  • Tretyakova EV, Smirnova IE, Salimova EV, Odinokov VN (2015) Synthesis and antiviral activity of maleopimaric and quinopimaric acids’ derivatives. Bioorg Med Chem 23:6543–6550

    Article  PubMed  CAS  Google Scholar 

  • Tretyakova EV, Salimova EV, Odinokov VN, Dzhemilev UM (2016) Synthesis of a novel 1,2,4-oxadiazole diterpene from the oxime of the methyl ester of 1β,13-epoxydihydroquinopimaric acid. Nat Prod Commun 11:23–24

    PubMed  Google Scholar 

  • Xu H, Liu L, Fan X, Zhang G, Li Y, Jiang B (2017) Identification of a diverse synthetic abietanediterpenoid library for anticancer activity. Med. Chem. Lett. 27:505–510

    Article  CAS  Google Scholar 

  • Yao K, Wang J, Zhang W, Lee JS, Wang C, Chu F, He X, Tang C (2011) Degradable rosin ester-caprolactone graft copolymers. Biomacromol 12:2171–2177

    Article  CAS  Google Scholar 

  • Zalkov LU, Ford RA, Cutney JP (1962) Oxidation of maleopimaric acid with alkaline permanganate. J Org Chem 27:3535–3539

    Article  Google Scholar 

  • Zhang G-J, Li Yu-H, Jiang J-D, Yu Sh-Sh QuJ, Maa Sh-G, Liu Y-B, Yu De-Q (2013) Anti-coxsackie virus B diterpenes from the roots of Illicium jiadifengpi. Tetrahedron 69:1017–1023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Russian Science Foundation (Grant RSF N16-13-10051). The structural studies of the compounds 3-20 were performed with unique equipment in “Agidel” collective usage centre. Antimicrobial screening was performed by CO-ADD (The Community for Antimicrobial Drug Discovery), funded by the Wellcome Trust (UK) and The University of Queensland (Australia).We thank National Cancer Institute for screening of cytotoxicity of compounds 15, 7, 8, 1113, 1719.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Tret’yakova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tret’yakova, E.V., Zakirova, G.F., Salimova, E.V. et al. Convenient one-pot synthesis of resin acid Mannich bases as novel anticancer and antifungal agents. Med Chem Res 27, 2199–2213 (2018). https://doi.org/10.1007/s00044-018-2227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-018-2227-4

Keywords

Navigation