Skip to main content
Log in

Secondary metabolites from two Hispaniola Ageratina species and their cytotoxic activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Study of the aerial parts of the two species of Ageratina: A. dictyoneura and A. illita afforded four new ent-labdane diterpenoids (14). Two known labdanes: 2β,3α,15-trihydroxy-ent-labd-7-ene (5), and 2β,3α-trihydroxy-ent-labd-7-en-15-oic acid (6); two sesquiterpene lactones: 8β-hydroxy-β-cyclocostunolide (7) and eupatoriopicrin (8), one benzofuran, and six flavonoids were also isolated. Their chemical structures were determined based on extensive spectroscopic study, comparison with reported data and chemical transformations. The cytotoxicity of the new ent-labdane diterpenoids 13, sesquiterpene lactone 7, and the flavonoid: quercetin 3,7-dimethylether were assessed against the human myeloid leukemia U-937 cell line and found that compound 7 and quercetin 3,7-dimethylether were cytotoxic against this cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aboushoer MI, Fathy HM, Abdel-Kader MS, Goetz G, Omar AA (2010) Terpenes and flavonoids from Egyptian collection of Cleome droserifolia. Nat Prod Res 24:687–696

    Article  PubMed  CAS  Google Scholar 

  • Castillo QA, Triana J, Eiroa JL, Calcul L, Rivera E, Wojtas L, Padrón JM, Boberieth L, Keramane M, Abel-Santos E, Báez LA, Germosén EA (2016) Ent-labdane diterpenoids from aerial parts of Eupatorium obtusissmum. J Nat Prod 79:907–913

    Article  PubMed  CAS  Google Scholar 

  • Castillo QA, Triana J, Eiroa JL, Padrón JM, Plata GB, Abel-Santos EV, Báez LA, Rodríguez DC, Jiménez MA, Pérez-Pujols MG (2015) Flavonoids from Eupatorium illitum and their antiproliferative activities. Pharmacogn J 7:178–181

    Article  CAS  Google Scholar 

  • Chen L, Zhu H, Wang R, Zhou K, Jing Y, Qiu F (2008) Ent-labdane diterpenoids lactone stereoisomers from Andrographis paniculata. J Nat Prod 71:852–855

    Article  PubMed  CAS  Google Scholar 

  • Chen YL, Kawahara T, Hind DNJ (2011) Eupatorieae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 20–21. Science press-Missouri Botanical Garden Press, Beijing-St Louis, pp 879–891

  • DeLean A, Munson PJ, Rodbard D (1978) Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol 235:E97–E102

    Article  PubMed  CAS  Google Scholar 

  • Drożdż B, Grabarczyk H, Samek Z, Holub M, Herout V, Šorm F (1972) On terpenes. CCXVI. Sesquiterpenic lactones from Eupatorium cannabinum L., revision of the structure of eupatoriopicrin. Collect Czech Chem Commun 37:1546–1554

    Article  Google Scholar 

  • Estévez-Sarmiento F, Said M, Brouard I, León F, García C, Quintana J, Estévez F (2017) 3′-Hydroxy-3,4′-dimethoxyflavone blocks tubulin polymerization and is a potent apoptotic inducer in human SK-MEL-1 melanoma cells. Bioorg Med Chem 25:6060–6070

    Article  PubMed  CAS  Google Scholar 

  • Herz W (2001) Chemistry of eupatoriinae. Biochem Syst Ecol 20:1115–1137

    Article  Google Scholar 

  • Horie T, Ohtsuru Y, Shibata K, Yamashita K, Tsukayama M, Kawamura Y (1998) 13C NMR spectral assignment of the A-ring of polyoxygenated flavones. Phytochemistry 47:865–874

    Article  CAS  Google Scholar 

  • Jakupovic L, Lehmann L, Bohlmann F, King RM, Robinson H (1988) Sesquiterpene lactones and other constituents from Cassinia, Actinobole and Anaxeton species. Phytochemistry 27:3831–3839

    Article  CAS  Google Scholar 

  • King R, Robinson H (1970) Studies in the Eupatoriae (Compositae). XIX. New combinations in Ageratina. Phytologia 29:208–229

    Google Scholar 

  • King RM, Robinson H (1987) The genera of the Eupatorieae (Asteraceae), Monogr Syst Bot Missouri Bot Gard, vol 22. Allen Press Inc., Lawrence, Kansas, USA

  • Liu PY, Liu D, Li WH, Zhao T, Sauriol F, Gu YC, Shi QW, Zhang ML (2015) Chemical constituents of plants from genus Eupatorium (1904-2014). Chem Biodivers 12:1841–1515

    Google Scholar 

  • Ma QP, Cheng CR, Li XF, Liang XY, Ding J (2015) Chemistry, pharmacological activities and analysis of Ageratina adenophora. Asian J Chem 27:4311–4316

    Article  CAS  Google Scholar 

  • Pruski JF, Clase TG (2012) Studies of Neotropical compositae-VI. New species of Eupatorieae from Belize. Hispaniola Peru Phytoneuron 32:1–15

    Google Scholar 

  • Rivera VL, Panero JL, Schilling EE, Crozier BS, Moraes MD (2016) Origins and recent radiation of Brazilian eupatorieae (Asteraceae) in the eastern cerrado and atlantic forest. Mol Phylogenet Evol 97:90–100

    Article  PubMed  Google Scholar 

  • Scio E, Ribeiro A, Alves TMA, Romanha AJ, Filho JDdS, Cordell GA, Zani CL (2003) Diterpenes from Alomia myriadenia (Asteraceae) with cytotoxic and trypanocidal activity. Phytochemistry 64:1125–1131

    Article  PubMed  CAS  Google Scholar 

  • Sy L, Brown GD (1998) Three sesquiterpenes from Artemisia annua. Phytochemistry 48:1207–1211

    Article  CAS  Google Scholar 

  • Triana J, Eiroa JL, Morales M, Perez FJ, Brouard I, Quintana J, Ruiz-Estévez M, Estévez F, León F (2016) Sesquiterpenoids isolated from two species of the Asteriscus alliance. J Nat Prod 79:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Wabo HK, Chabert P, Tane P, Noté O, Tala MF, Peluso J, Muller C, Kikuchi H, Oshima Y, Lobstein A (2012) Labdane-type diterpenes and flavones from Dodonaea viscosa. Fitoterapia 83:859–863

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Gao H, Zhao J, Wang Q, Zhou L, Han J, Yu Z, Yang F (2010) Preparative separation of phenolic compounds from Halimodendron halodendron by high-speed counter-current chromatography. Molecules 15:5998–6007

    Article  PubMed  CAS  Google Scholar 

  • Yang SL, King RA, Roberts MF (1990) The flavonoids of Ageratina deltoidea. Biochem Syst Ecol 18:485–486

    Article  CAS  Google Scholar 

  • Zdero C, Bohlmann F, Niemeyer HM (1990) Ent-labdane glycosides from Baccharis pingraea. Phytochemistry 29:2611–2616

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZY, Liu WX, Pei G, Ren H, Wang J, Xu QL, Xie HH, Wan FH, Tan JW (2013) Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth. J Agric Food Chem 61:11792–11799

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Ministerio de Educación Superior, Ciencia y Tecnología (MESCYT), Dominican Republic, FONDOCYT Program, under grants 2009-2C3-016 and 2013-1D4-003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Luis Eiroa or Francisco León.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

In memoriam: Professor Dr. Francisco J. Pérez.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eiroa, J.L., Triana, J., Pérez, F.J. et al. Secondary metabolites from two Hispaniola Ageratina species and their cytotoxic activity. Med Chem Res 27, 1792–1799 (2018). https://doi.org/10.1007/s00044-018-2192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-018-2192-y

Keywords

Navigation