Medicinal Chemistry Research

, Volume 27, Issue 5, pp 1419–1431 | Cite as

Synthesis, characterization, and bioactivity of new bisamidrazone derivatives as possible anticancer agents

  • Malath A. Al-Qtaitat
  • Mustafa M. El-Abadelah
  • Dima A. Sabbah
  • Sanaa Bardaweel
  • Kamal Sweidan
  • Salim S. Sabri
  • Mohammad S. Mubarak
Original Research


A novel series of new di-(N-piperazin-1-yl)amidrazones and related congeners (3as) was synthesized by reaction of Nʹ,Nʺ-(biphenyl-4,4ʹ-diyl)-bis(2-oxopropanehydrazonoyl chloride) (2) with a selected set of secondary amines in basic media. Structures of the newly synthesized compounds were confirmed by elemental analysis and by various spectroscopic techniques such as 1H NMR, 13C NMR, 2D-NMR, and ESI-HRMS spectral data. Prepared compounds have been screened for antitumor activity against different cancer cell lines including breast cancer (MCF-7), colon cancer (Caco-2), and Leukemia (K562) cell lines using the tetrazolium dye 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay. Although with varying degrees, a significant growth inhibitory and cytotoxic effect was observed on all three cancer cell lines. Compounds 3a, 3b, 3c, 3d, and 3m, showed significant growth inhibitory and cytotoxic effect against the aforementioned cancer cell lines. Glide docking studies against PI3Kα demonstrated that some structural analogues accommodate PI3Kα kinase domain and bind to Ser774, Ala775, Glu798, Lys802, Tyr836, Val851, Asn853, Thr856, Gln859, Ser919, and Asp933. Additionally, part of the backbones of prepared compounds fit the pharmacophoric features of PI3Kα active inhibitors.


Biphenyl-4,4’-amidrazone Bis(2-oxopropanehydrazonoyl chloride) Breast cancer Colon cancer Leukemia Docking PI3Kα kinase 



Authors wish to thank the Deanship of Scientific Research at The University of Jordan for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

44_2018_2158_MOESM1_ESM.docx (466 kb)
Supplementary Information
44_2018_2158_MOESM2_ESM.docx (971 kb)
Supplementary Figure


  1. Abadleh MM, El-Abadelah MM, Sabri SS, Mohammed HH, Zihlif MA, Voelter W (2014) Synthesis and antitumor activity of some N2-(Thien-3-yl) amidrazones. Z Naturforsch B Chem Sci 69(7):811–816CrossRefGoogle Scholar
  2. Abdel-Jalil RJ, El Momani EQ, Hamad M, Voelter W, Mubarak MS, Smith BH, Peters DG (2010) Synthesis, antitumor activity, and electrochemical behavior of some piperazinyl amidrazones. Mon Chem 141(2):251–258CrossRefGoogle Scholar
  3. Abu-Aisheh MN, Mustafa MS, El-Abadelah MM, Naffa RG, Ismail SI, Zihlif MA, Taha MO, Mubarak MS (2012) Synthesis and biological activity assays of some new N1-(flavon-7-yl) amidrazone derivatives and related congeners. Eur J Med Chem 54:65–74CrossRefPubMedGoogle Scholar
  4. Ahmed D, Eide P, Eilertsen I, Danielsen S, Eknaes M, Hektoen M, Lind G, Lothe R (2013) Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2(9):e71CrossRefPubMedPubMedCentralGoogle Scholar
  5. Al-Qtaitat MA, Saadeh HA, Al-Bakri AG, Kaur H, Goyal K, Sehgal R, Mubarak MS (2015) Synthesis, characterization, and biological activity of novel metronidazole-piperazine amides. Mon Chem 146(4):705–712CrossRefGoogle Scholar
  6. Al‐zagameem AS, El‐Abadelah MM, Zihlif MA, Naffa RG, Al‐Smadi ML, Mubarak MS (2016) Synthesis and bioassay of novel substituted pyrano[2,3‐f]cinnoline‐2‐ones. J Heterocycl Chem 53(6):1771–1777CrossRefGoogle Scholar
  7. Aly A, Ramadan M, Fatthy H (2017) Synthesis of heterocycles from amidrazones. Adv Heterocycl Chem 122: 115–139Google Scholar
  8. Aly AA, Nour-El-Din AM (2008) Functionality of amidines and amidrazones. Arkivoc 1:153–194Google Scholar
  9. Andersson LC, Nilsson K, Gahmberg CG (1979) K562 a human erythroleukemic cell line. Int J Cancer 23(2):143–147CrossRefPubMedGoogle Scholar
  10. Beaver JA, Gustin JP, Kyung HY, Rajpurohit A, Thomas M, Gilbert SF, Rosen DM, Park BH, Lauring J (2013) PIK3CA and AKT1 mutations have distinct effects on sensitivity to targeted pathway inhibitors in an isogenic luminal breast cancer model system. Clin Cancer Res 19(19):5413–5422CrossRefPubMedPubMedCentralGoogle Scholar
  11. Blair BG, Wu X, Zahari MS, Mohseni M, Cidado J, Wong HY, Beaver JA, Cochran RL, Zabransky DJ, Croessmann S (2015) A phosphoproteomic screen demonstrates differential dependence on HER3 for MAP kinase pathway activation by distinct PIK3CA mutations. Proteomics 15(2-3):318–326CrossRefPubMedGoogle Scholar
  12. Ebi H, Costa C, Faber AC, Nishtala M, Kotani H, Juric D, Della Pelle P, Song Y, Yano S, Mino-Kenudson M, Benes CH, Engelman JA (2013) PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1. Proc Natl Acad Sci USA 110(52):21124–21129CrossRefPubMedPubMedCentralGoogle Scholar
  13. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749CrossRefPubMedGoogle Scholar
  14. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196CrossRefPubMedGoogle Scholar
  15. Huang C-H, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW, Vogelstein B, Gabelli SB, Amzel LM (2007) The structure of a human p110α/p85α complex elucidates the effects of oncogenic PI3Kα mutations. Science 318(5857):1744–1748CrossRefPubMedGoogle Scholar
  16. Kheder NA, Darwish ES (2014) Diethyl 2, 2’-[Biphenyl-4, 4’-diyldihydrazin-2-yl-1-ylidene] bis (chloroacetate). Molbank 2014(1):M813CrossRefGoogle Scholar
  17. Klein E, Vánky F, Ben‐Bassat H, Neumann H, Ralph P, Zeuthen J, Polliack A (1976) Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer 18(4):421–431CrossRefPubMedGoogle Scholar
  18. Koeffler HP, Golde DW (1980) Human myeloid leukemia cell lines: a review. Blood 56(3):344–350PubMedGoogle Scholar
  19. Lauring J, Park BH, Wolff AC (2013) The phosphoinositide-3-kinase-Akt-mTOR pathway as a therapeutic target in breast cancer. J Natl Compr Canc Netw 11(6):670–678CrossRefPubMedPubMedCentralGoogle Scholar
  20. Levenson AS, Jordan VC (1997) MCF-7: the first hormone-responsive breast cancer cell line. Cancer Res 57(15):3071–3078PubMedGoogle Scholar
  21. Li G-Y, Jung KH, Lee H, Son MK, Seo J, Hong S-W, Jeong Y, Hong S, Hong S-S (2013) A novel imidazopyridine derivative, HS-106, induces apoptosis of breast cancer cells and represses angiogenesis by targeting the PI3K/mTOR pathway. Cancer Lett 329(1):59–67CrossRefPubMedGoogle Scholar
  22. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45(3):321–334PubMedGoogle Scholar
  24. MacCoss M, Baillie TA (2004) Organic chemistry in drug discovery. Science 303(5665):1810–1813CrossRefPubMedGoogle Scholar
  25. Mahon FX, Deininger MWN, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV (2000) Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 96(3):1070–1079PubMedGoogle Scholar
  26. Mamolo MG, Zampieri D, Falagiani V, Vio L, Fermeglia M, Ferrone M, Pricl S, Banfi E, Scialino G (2004) Antifungal and antimycobacterial activity of new N1-[1-aryl-2-(1Himidazol-1-yl and 1H-1,2,4-triazol-1-yl)-ethylidene]-pyridine-2-carboxamidrazone derivatives: A combined experimental and computational approach. Arkivoc 231:250Google Scholar
  27. Mandelker D, Gabelli SB, Schmidt-Kittler O, Zhu J, Cheong I, Huang C-H, Kinzler KW, Vogelstein B, Amzel LM (2009) A frequent kinase domain mutation that changes the interaction between PI3K alpha andthe membrane. Proc Natl Acad Sci USA 106(40):16996–17001CrossRefPubMedPubMedCentralGoogle Scholar
  28. Markandewar R, Baseer M (2016) Exploring Pharmacological Significance of Piperazine Scaffold. World Res. J Pharm Res 5:1409–1420Google Scholar
  29. Mireuta M, Darnel A, Pollak M (2010) IGFBP-2 expression in MCF-7 cells is regulated by the PI3K/AKT/mTOR pathway through Sp1-induced increase in transcription. Growth Factors 28(4):243–255CrossRefPubMedGoogle Scholar
  30. MOE (2016) The Molecular operating, Environment Chemical Computing Group, Inc Montreal, Quebec CanadaGoogle Scholar
  31. Mustafa MS, El-Abadelah MM, Mubarak MS, Chibueze I, Shao D, Agu RU (2011) Synthesis and fluorogenic properties of some 1-(coumarin-7-yl)-4,5-dihydro-1,2,4-triazin-6(1H)-ones. Intern J Chem 3(4):89CrossRefGoogle Scholar
  32. Mustafa MS, El-Abadelah MM, Zihlif MA, Naffa RG, Mubarak MS (2011a) Synthesis, and antitumor activity of some N1-(coumarin-7-yl)amidrazones and related congeners. Molecules 16(5):4305–4317CrossRefPubMedGoogle Scholar
  33. Pandurangan AK (2013) Potential targets for prevention of colorectal cancer: a focus on PI3K/Akt/mTOR and Wnt pathways. Asian Pac J Cancer Prev 14(4):2201–2205CrossRefPubMedGoogle Scholar
  34. Paprocka R, Wiese M, Eljaszewicz A, Helmin-Basa A, Gzella A, Modzelewska-Banachiewicz B, Michalkiewicz J (2015) Synthesis and anti-inflammatory activity of new 1, 2, 4-triazole derivatives. Bioorg Med Chem Lett 25(13):2664–2667CrossRefPubMedGoogle Scholar
  35. Pessoa-Mahana H, Recabarren-Gajardo G, Temer JF, Zapata-Torres G, Pessoa-Mahana CD, Barría CS, Araya-Maturana R (2012) Synthesis, docking studies and biological evaluation of benzo[b]thiophen-2-yl-3-(4-arylpiperazin-1-yl)-propan-1-one derivatives on 5-HT1A serotonin receptors. Molecules 17(2):1388–1407CrossRefPubMedGoogle Scholar
  36. Phillips RR (1959) The Japp-Klingemann Reaction. Org React 10:143–178Google Scholar
  37. Pozdnev V (1990) Improved method for synthesis of 7-amino-4-methylcoumarin. Chem Heterocycl Compd 26(3):264–265CrossRefGoogle Scholar
  38. Ronad P, Dharbamalla S, Hunshal R, Maddi V (2008) Synthesis of Novel Substituted 7-(Benzylideneamino)-4-Methyl-2H-Chromen-2-one derivatives as anti-inflammatory and analgesic agents. Arch Pharm 341(11):696–700CrossRefGoogle Scholar
  39. Sabbah DA, Saada M, Khalaf RA, Bardaweel S, Sweidan K, Al-Qirim T, Al-Zughier A, Halim HA, Sheikha GA (2015) Molecular modeling based approach, synthesis, and cytotoxic activity of novel benzoin derivatives targeting phosphoinostide 3-kinase (PI3Kα). Bioorg Med Chem Lett 25(16):3120–3124CrossRefPubMedGoogle Scholar
  40. Sabbah DA, Simms NA, Brattain MG, Vennerstrom JL, Zhong H (2012) Biological evaluation and docking studies of recently identified inhibitors of phosphoinositide-3-kinases. Bioorg MedChemLett 22(2):876–880Google Scholar
  41. Sabbah DA, Vennerstrom JL, Zhong H (2010) Docking Studies on Isoform-Specific Inhibition of Phosphoinositide-3-Kinases. J Chem Inf Model 50(10):1887–1898CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schneck H, Blassl C, Meier-Stiegen F, Neves RP, Janni W, Fehm T, Neubauer H (2013) Analysing the mutational status of PIK3CA in circulating tumor cells from metastatic breast cancer patients. Mol Oncol 7(5):976–986CrossRefPubMedPubMedCentralGoogle Scholar
  43. Schrödinger (2016) Protein Preparation Wizard, Maestro, Macromodel, and QPLD-dock, Schrödinger, LLC, Portland, OR, U.S.A. 97204Google Scholar
  44. Senina A, Evdokimov A, Moskvin A, Fedorova E (2016) Synthesis, characterization and antimicrobial activity of amidrazone derivatives. J Adv Chem Sci 2(1):183–187Google Scholar
  45. Seyed MA, Jantan I, Bukhari SNA, Vijayaraghavan K (2016) A comprehensive review on the chemotherapeutic potential of piceatannol for cancer treatment, with mechanistic insights. J Agric Food Chem 64(4):725–737CrossRefPubMedGoogle Scholar
  46. Shawali AS, Samy NA (2009) Hydrazonoyl halides: their versatile biological activities. Open Bioact Compd J 2(1):8–16CrossRefGoogle Scholar
  47. She QB, Chandarlapaty S, Ye Q, Lobo J, Haskell KM, Leander KR, DeFeo-Jones D, Huber HE, Rosen N (2008) Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling. PLoS One 3(8): e3065Google Scholar
  48. Sweidan K, Sabbah DA, Bardaweel S, Dush KA, Sheikha GA, Mubarak MS (2016) Computer-aided design, synthesis, and biological evaluation of new indole-2-carboxamide derivatives as PI3Kα/EGFR inhibitors. Bioorg Med Chem Lett 26(11):2685–2690CrossRefPubMedGoogle Scholar
  49. Weigelt B, Warne PH, Downward J (2011) PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs. Oncogene 30(29):3222–3233CrossRefPubMedGoogle Scholar
  50. Wilson DM, Termin AP, Mao L, Ramirez-Weinhouse MM, Molteni V, Grootenhuis PD, Miller K, Keim S, Wise G (2002) Arylamidrazones as novel corticotropin releasing factor receptor antagonists. J Med Chem 45(11):2123–2126CrossRefPubMedGoogle Scholar
  51. Wu P, Hu YZ (2010) PI3K/Akt/mTOR pathway inhibitors in cancer: a perspective on clinical progress. Curr Med Chem 17(35):4326–4341CrossRefPubMedGoogle Scholar
  52. Zardavas D, Phillips WA, Loi S (2014) PIK3CA mutations in breast cancer: reconciling findings from preclinical and clinical data. Breast Cancer Res 16(1):201CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Malath A. Al-Qtaitat
    • 1
  • Mustafa M. El-Abadelah
    • 1
  • Dima A. Sabbah
    • 2
  • Sanaa Bardaweel
    • 3
  • Kamal Sweidan
    • 1
  • Salim S. Sabri
    • 1
  • Mohammad S. Mubarak
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceThe University of JordanAmmanJordan
  2. 2.Department of Pharmacy, Faculty of PharmacyAl-Zaytoonah University of JordanAmmanJordan
  3. 3.Department of Pharmaceutical Sciences, Faculty of PharmacyThe University of JordanAmmanJordan

Personalised recommendations