Medicinal Chemistry Research

, Volume 26, Issue 12, pp 3262–3273 | Cite as

Synthesis, antiprotozoal activity and cytotoxicity in U-937 macrophages of triclosan–hydrazone hybrids

  • Sebastian Vergara
  • Miguel Carda
  • Raül Agut
  • Lina M. Yepes
  • Iván D. Vélez
  • Sara M. Robledo
  • Wilson Cardona Galeano
Original Research


The synthesis and biological activities (cytotoxicity, leishmanicidal, and trypanocidal) of 11 triclosan–hydrazone hybrids are described herein. The structure of the products was elucidated by spectral data (NMR, IR) and mass spectrometric analyses. The synthesized compounds were evaluated against amastigotes forms of L. (V) panamensis, which is the most prevalent Leishmania species in Colombia, and against Trypanosoma cruzi, which is the major pathogenic species to Chagas disease in humans. In addition, the cytotoxic activity of the synthesized compounds was evaluated against human U-937 macrophages. Hydrazone hybrids were obtained as E-synperiplanar and E-antiperiplanar conformers. Nine of them were active against L. (V) panamensis (5a5d, 5f5j) and eight of them against T. cruzi (5a, 5c, 5d, 5f5j), with EC50 values lower than 40 µM. The compounds 5c, 5e, and 5h exhibit the best selectivity index against both L. (V) panamensis and T. cruzi, with values ranging from 5.90 to 16.55, thus showing potential as starting compounds for the eventual development of drugs against these parasites. The presence of hydroxy or methoxy groups in positions 2 and 4 of the aromatic ring of the benzylidene moiety increases both activity and cytotoxicity. There is no clear relationship between the antiprotozoal activity and the methylation pattern of the hydroxy groups, since in some cases methylation decreases the activity (5d vs. 5g) while in other cases the activity is increased (5c vs. 5f and 5i vs. 5j).


Leishmaniasis Chagas disease Trypanosoma cruzi Antiprotozoal activity Cytotoxicity Triclosan-Hydrazone Hybrids 



The authors thank COLCIENCIAS (contract no. 0333-2013, code: 111556933423) for financial support.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no competing interests.


  1. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLOS One 7:e35671CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arango V, Domínguez JJ, Cardona W, Robledo SM, Muñoz DL, Figadere B, Saéz J (2012) Synthesis and leishmanicidal activity of quinoline-triclosan and quinoline-eugenol hybrids. Med Chem Res 21:3445–3454CrossRefGoogle Scholar
  3. Basilio A, Miguez E, Kümmerle AE, Rumjanek VM, Manssour CA, Barreiro EJ (2013) Characterization of amide bond conformers for a novel heterocyclic template of N-acylhydrazone derivatives. Molecules 18:11683–11704CrossRefGoogle Scholar
  4. Bernardino AM, Gomes AO, Charret KS, Freitas AC, Machado GM, Canto-Cavalheiro MM, Leon LL, Amaral VF (2006) Synthesis and leishmanicidal activities of 1-(4-X-phenyl)-N ′ -[(4-Y- phenyl)methylene]-1H-pyrazole-4-carbohydrazides. Eur J Med Chem 41:80–87CrossRefPubMedGoogle Scholar
  5. Bhutta ZA, Sommerfeld J, Lassi ZS, Salam RA, Das JK (2014) Tackling the existing burden of infection diseases in the developing world: existing gaps and the way forward. Infect Dis Poverty 3:1–6CrossRefGoogle Scholar
  6. Buckner FS, Verlinde CL, La Flamme AC, Van Voorhis WC (1996) Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob Agents Chemother 40:2592–2597PubMedPubMedCentralGoogle Scholar
  7. Cardona W, Guerra D, Restrepo A (2014) Reactivity of δ-substituted α,β-unsaturated cyclic lactones with antileishmanial activity. Mol Simul 40:477–484CrossRefGoogle Scholar
  8. Carvalho S, Feitosa L, Soares M, Costa T, Henriques MG, Salomão K, de Castro SL, Kaiser M, Brun R, Wardell JL, Wardell S, Trossini G, Andricopulo AD, da Silva EF, Fraga C (2012) Design and synthesis of new (E)-cinnamic N-acylhydrazones as potent antitrypanosomal agents. Eur J Med Chem 54:512–521CrossRefPubMedGoogle Scholar
  9. Chatelain E, Ioset JR (2011) Drug discovery and development for neglected diseases: the DNDi model. Drug Des Dev Ther 16:175–181Google Scholar
  10. Coa JC, Castrillón W, Cardona W, Carda M, Ospina V, Muñoz JA, Vélez ID, Robledo SM (2015) Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids. Eur J Med Chem 101:746–753CrossRefPubMedGoogle Scholar
  11. Den Boer M, Argaw D, Jannin J, Alvar J (2011) Leishmaniasis impact and treatment access. Clin Microbiol Infect 17:1471–1477CrossRefGoogle Scholar
  12. Finney JD (1978) Probit analysis: statistical treatment of the sigmoid response curve, 3rd edn. Cambridge University Press, Cambridge, UK, p 550Google Scholar
  13. Hernández P, Rojas R, Gilman RH, Sauvain M, Lima LM, Barreiro EJ, González M, Cerecetto H (2013) Hybrid furoxanyl N-acylhydrazone derivatives as hits for the development of neglected diseases drug candidates. Eur J Med Chem 59:64–74CrossRefPubMedGoogle Scholar
  14. Ifa DR, Rodrigues CR, Alencastro RB, Fraga CAM, Barreiro EJ (2000) A possible molecular mechanism for the inhibition of cysteine proteases by salicylaldehyde N-acylhydrazones and related compounds. J Mol Struct Theochem 505:11–17CrossRefGoogle Scholar
  15. Insuasty B, Ramirez J, Becerra D, Echeverry C, Quiroga J, Abonia R, Robledo SM, Velez ID, Upegui Y, Muñoz JA, Ospina V, Nogueras M, Cobo J (2015) An efficient synthesis of a new caffeine-based chalcones, pyrazolines and pyrazolo[3-4-b][1-4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur J Chem Med 93:401–413CrossRefGoogle Scholar
  16. Jorge SD, Palace-Berl F, Mesquita Pasqualoto KF, Ishii M, Ferreira AK, Berra CM, Bosch RV, Maria DA, Tavares LC (2013) Ligand-based design, synthesis, and experimental evaluation of novel benzofuroxan derivatives as anti-Trypanosoma cruzi agents. Eur J Med Chem 64:200–214CrossRefPubMedGoogle Scholar
  17. Kapoor M, Reddy C, Krishnasastry MV, Surolia N, Surolia A (2004) Slow-tight-binding inhibition of enoyl-acyl carrier protein reductase from Plasmodium falciparum by triclosan. Biochem J 381:719–724CrossRefPubMedPubMedCentralGoogle Scholar
  18. Keenan M, Chaplin JH (2015) A new era for chagas disease drug discovery? Prog Med Chem 54:185–230CrossRefPubMedGoogle Scholar
  19. Keith CT, Borisy A, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4:71–78CrossRefPubMedGoogle Scholar
  20. Massarico Serafim RA, Gonçalves JE, de Souza FP, de Melo Loureiro AP, Storpirtis S, Krogh R, Andricopulo AD, Dias LC, Ferreira EI (2014) Design, synthesis and biological evaluation of hybrid bioisoster derivatives of N-acylhydrazone and furoxan groups with potential and selective anti-Trypanosoma cruzi activity. Eur J Med Chem 82:418–425CrossRefPubMedGoogle Scholar
  21. McLeod R, Muench SP, Rafferty JB, Kyle DE, Mui EJ, Kirisits MJ, Mack DG, Roberts CW, Samuel BU, Lyons RE, Dorris M, Milhous WK, Rice DW (2001) Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int J Parasitol 31:109–113CrossRefPubMedGoogle Scholar
  22. Meunier B (2008) Hybrid molecules with a dual mode of action: dream or reality? Acc Chem Res 41:69–77CrossRefPubMedGoogle Scholar
  23. Mottram JC, Coombs GH, Alexander J (2004) Cysteine peptidases as virulence factors of Leishmania. Curr Opin Microbiol 7:375–381CrossRefPubMedGoogle Scholar
  24. Nouvellet P, Cucunubá ZM, Gourbière S (2015) Ecology, evolution and control of Chagas disease: a century of neglected modelling and promising future. Adv Parasitol 87:135–191CrossRefPubMedGoogle Scholar
  25. Opsenica I, Opsenica D, Lanteri CA, Anova L, Milhous WK, Smith KS, Solaja BA (2008) New chimeric antimalarials with 4-aminoquinoline moiety linked to a tetraoxane skeleton. J Med Chem 51:6216–6219CrossRefPubMedGoogle Scholar
  26. Otero E, Vergara S, Robledo SM, Cardona W, Carda M, Vélez ID, Rojas C, Otálvaro F (2014) Synthesis, leishmanicidal and cytotoxic activity of triclosan-chalcone, triclosan-chromone and triclosan-coumarin hybrids. Molecules 19:13251–13266CrossRefPubMedGoogle Scholar
  27. Porcal W, Hernández P, Boiani L, Boiani M, Ferreira A, Chidichimo A, Cazzulo J, Olea-Azar C, González M, Cerecetto H (2008) New trypanocidal hybrid compounds from the association of hydrazine moieties and benzofuroxan heterocycle. Bioorg Med Chem 16:6995–7004CrossRefPubMedGoogle Scholar
  28. Perozzo R, Kuo M, Sidhu AbS, Valiyaveettil JT, Bittman R, Jacobs Jr WR, Fidock DA, Sacchettini JC (2002) Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. J Biol Chem 277:13106–13114CrossRefPubMedGoogle Scholar
  29. Pulido SA, Muñoz DL, Restrepo AM, Mesa CV, Alzate JF, Vélez ID, Robledo SM (2012) Improvement of the green fluorescent protein reporter system in Leishmania spp. for the in vitro and in vivo screening of antileishmanial drugs. Acta Trop 122:36–45CrossRefPubMedGoogle Scholar
  30. Rahman M, Mukhtar S, Ansari WH, Lemiere G (2005) Synthesis, stereochemistry and biological activity of some novel long alkyl chain substituted thiazolidin-4-ones and thiazan-4-one from 10- undecenoic acid hydrazide. Eur J Med Chem 40:173–184CrossRefPubMedGoogle Scholar
  31. Rando D, Avery M, Tekwani B, Khan S, Ferreira E (2008) Antileishmanial activity screening of 5- nitro-2-heterocyclic benzylidene hydrazides. Bioorg Med Chem 16:6724–6731CrossRefPubMedGoogle Scholar
  32. Richardson DR, Tran EH, Ponka P (1995) The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. Blood 86:4295–4306PubMedGoogle Scholar
  33. Rollas S, Küçükgüzel ŞG (2007) Biological activities of hydrazone derivatives. Molecules 12:1910–1939CrossRefPubMedGoogle Scholar
  34. Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3:353–359CrossRefPubMedGoogle Scholar
  35. Singh M, Raghav N (2011) Biological activities of hydrazones: a review. Int J Pharm Pharm Sci 3:26–32Google Scholar
  36. Surolia N, Surolia A (2001) Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase. Nat Med 7:167–173CrossRefPubMedGoogle Scholar
  37. Taha M, Ismail NH, Ali M, Khan KM, Jamil W, Kashif SM, Asraf M (2014) Synthesis of indole-2- hydrazones in search of potential leishmanicidal agents. Med Chem Res 23:5282–5293CrossRefGoogle Scholar
  38. Taha M, Ismail NH, Imran S, Anouar EH, Selvaraj M, Jamil W, Ali M, Kashif SM, Rahim F, Khan KM, Adenan MI (2017) Synthesis and molecular modelling studies of phenyl linked oxadiazole- phenylhydrazone hybrids as potent antileishmanial agents. Eur J Med Chem 126:1021–1033CrossRefPubMedGoogle Scholar
  39. Taylor VM, Cedeño DL, Muñoz DL, Jones MA, Lash TD, Young AM, Constantino MH, Esposito N, Vélez ID, Robledo SM (2011) In vitro and in vivo studies of the utility of dimethyl and diethyl carbaporphyrin ketals in treatment of cutaneous leishmaniasis. Antimicrob Agents Chemother 55:4755–4764CrossRefPubMedPubMedCentralGoogle Scholar
  40. Verma G, Marella A, Shaquiquzzaman M, Akhtar M, Rahmat Ali M, Mumtaz Alam M (2014) A review exploring biological activities of hydrazones. J Pharm Bioallied Sci 6:69–80CrossRefPubMedPubMedCentralGoogle Scholar
  41. Walcourt A, Loyevsky M, Lovejoy DB, Gordeuk VR, Richardson DR (2004) Novel aroylhydrazone and thiosemicarbazone iron chelators with anti-malarial activity against chloroquine-resistant and -sensitive parasites. Int J Biochem Cell Biol 36:401–407CrossRefPubMedGoogle Scholar
  42. Walsh JJ, Coughlan D, Heneghan N, Gaynor C, Bell A (2007) A novel artemisinin-quinine hybrid with potent antimalarial activity. Bioorg Med Chem Lett 17:3599–3602CrossRefPubMedGoogle Scholar
  43. WHO (2013) Why are Some Tropical Diseases Called ‘Neglected’? Accessed 12 Apr 2013.
  44. WHO (2002) Control of Chagas disease: second report of the WHO expert committee, vol 905. World Health Organization, Geneva, p 109. ISBN 9241209054. Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sebastian Vergara
    • 1
  • Miguel Carda
    • 2
  • Raül Agut
    • 2
  • Lina M. Yepes
    • 3
  • Iván D. Vélez
    • 3
  • Sara M. Robledo
    • 3
  • Wilson Cardona Galeano
    • 1
  1. 1.Chemistry of Colombian Plants, Institute of Chemistry, Exact and Natural Sciences SchoolUniversity of Antioquia-UdeAMedellínColombia
  2. 2.Department of Inorganic and Organic ChemistryJaume I UniversityCastellónSpain
  3. 3.PECET-Medical Research Institute, School of MedicineUniversity of Antioquia-UdeAMedellínColombia

Personalised recommendations