Medicinal Chemistry Research

, Volume 26, Issue 12, pp 3209–3215 | Cite as

α-Amylase and α-glucosidase inhibitory activities of the herbs of Artemisia dracunculus L. and its active constituents

  • Zühal Güvenalp
  • Hilal Özbek
  • Benan Dursunoğlu
  • Hafize Yuca
  • Sefa Gözcü
  • Yeşim M. Çil
  • Cavit Kazaz
  • Kemalettin Kara
  • Ömür L. Demirezer
Original Research
  • 166 Downloads

Abstract

A new phenylpropanoid named 4-(1′,1′,2′,2′-tetramethylpropyl)-1,2-benzenediol (1) with a known phenylpropanoid: 3-(p-methoxyphenyl)-1,2-propanediol (2), a coumarin: herniarin (3), and a flavonol glycoside: rutin (4) were isolated from the aerial parts of Artemisia dracunculus L. Their structures were elucidated by detailed analyses of 1D and 2D nuclear magnetic resonance, IR, ESI–MS and HR–ESI–MS data. Methanol extract of aerial parts of the plant, different polarity fractions of methanol extract and the isolated compounds from these fractions were evaluated for their alpha amylase and alpha glucosidase inhibitory effects. Phenylpropanoids containing fraction had a significantly higher α-glucosidase inhibitory activity (90.4%) when compared with the standart compound acarbose (26.0%) at 1 mg/mL. However none of the tested extracts or compounds were found to be active on α-amylase inhibition.

Keywords

Artemisia dracunculus L. Asteraceae α-glucosidase inhibition α-amylase inhibition 

Notes

Acknowledgements

This work was supported by The Foundation of Atatürk University (2015/324).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Aggarwal S, Shailendra G, Ribnicky DM, Burk D, Karki N, Wang MSQ (2015) An extract of Artemisia dracunculus L. stimulates insülin secretion from β cells, activates AMPK and suppresses inflammation. J Ethnopharmacol 170:98–105CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aglarova AM, Zilfikarov IN, Severtseva OV (2008) Biological characteristics and useful properties of Tarragon (Artemisia dracunculus L.). Pharm Chem J 42:31–35CrossRefGoogle Scholar
  3. Baytop T (1999) Türkiye’de Bitkiler ile Tedavi: Geçmişte ve Bugün. Nobel Tıp Kitabevleri, İstanbulGoogle Scholar
  4. Bhutia TD, Valant-Vetschera KM (2008) Chemodiversity of Artemisia dracunculus L. from Kyrgyzstan: Isocoumarins, coumarins, and flavonoids from aerial parts. Nat Prod Commun 3:1289–1292Google Scholar
  5. Brahmi Z, Katho T, Hatsumata R, Hiroi A, Miyakawa N, Yakou E, Sugaya K, Onose J, Abe N (2012) Effective cytochrome P450 (CYP) inhibitors isolated from Tarragon (Artemisia dracunculus). Biosci Biotechnol Biochem 76:1028–1031CrossRefPubMedGoogle Scholar
  6. Brenna E, Fuganti C, Gatti FG, Parmeggiani F (2009) New stereospecific synthesis of Tesaglitazar and Navaglitazar precursors. Tetrahedron Asymmetry 20:2694–2698CrossRefGoogle Scholar
  7. Choi C, Lee SR, Kim KH (2015) Antioxidant and α-glucosidase inhibitory activities of constituents from Euonymus alatus twigs. Ind Crop Prod 76:1055–1060CrossRefGoogle Scholar
  8. Chumbalov TK, Mukhamed’yarova M (1970) Flavonoids of Artemisia dracunculus II. Chem Nat Compd 6:645CrossRefGoogle Scholar
  9. Eisenman SW, Poulev A, Struwe L, Raskin I, Ribnicky DM (2011) Qualitative variation of anti-diabetic compounds in different tarragon (Artemisia dracunculus L.) cytotypes. Fitoterapia 82:1062–1074CrossRefPubMedPubMedCentralGoogle Scholar
  10. Güvenalp Z, Kılıç N, Kazaz C, Kaya Y, Demirezer LÖ (2006) Chemical constituents of Galium tortumense. Turk J Chem 30:515–518Google Scholar
  11. Hamid HA, Yusoff MM, Liu M, Karim MR (2015) α-Glucosidase and α-amylase inhibitory constituents of Tinospora crispa: Isolation and chemical profile confirmation by ultra-high performance liquid chromatography-quadrupole time-of-flight/mass spectrometry. J Funct Foods 16:74–80CrossRefGoogle Scholar
  12. Imran S, Taha M, Ismail NH, Kashif SM, Rahim F, Jamil W, Wahab H, Khan KM (2016) Synthesis, in vitro and docking studies of new flavone ethers as α-glucosidase inhibitors. Chem Biol Drug Des 87(3):361–373CrossRefPubMedGoogle Scholar
  13. Islam MN, Jung HA, Sohn HS, Kim HM, Choi JS (2013) Potent α-glucosidase and protein tyrosine phosphatase 1B inhibitors from Artemisia capillaris. Arch Pharm Res 36:542–552CrossRefGoogle Scholar
  14. Kheterpal I, Scherp P, Kelley L, Wang Z, Johnson W, Ribnicky D, Cefalu WT (2014) Bioactives from Artemisia dracunculus L. Enhance insulin sensitivity via modulation of skeletal muscle protein phosphorylation. Nutrition 30:43–51CrossRefGoogle Scholar
  15. Nampoothiri SV, Prathapan A, Cherian OL, Raghu KG, Venugopalan VV, Sundaresan A (2011) In vitro antioxidant and inhibitory potential of Terminalia bellerica and Emblica officinalis fruits against LDL oxidation and key enzymes linked to type 2 diabetes. Food Chem Toxicol 49(1):125–131CrossRefPubMedGoogle Scholar
  16. Oboh G, Akinyemi AJ, Ademiluyi AO (2012) Inhibition of α-amylase and α-glucosidase activities by ethanolic extract of Telfairia occidentalis (fluted pumpkin) leaf. Asian Pacific J Trop Biomed 2(9):733–738CrossRefGoogle Scholar
  17. Obolskiy D, Pischel I, Feistel B, Glotov N, Heinrich M (2001) Artemisia dracunculus L. (Tarragon). A critical review of its traditional use, chemical composition, pharmacology and safety. J Agr Food Chem 59:11367–11384CrossRefGoogle Scholar
  18. Shan W, Wu Z, Pang W, Ma L, Ying Y, Zhan Z (2015) α-Glucosidase inhibitors from the fungus Aspergillus terreus 3.05358. Chem Biodivers 12:1718–1724CrossRefPubMedGoogle Scholar
  19. Tao Y, Zhang Y, Cheng Y, Wang Y (2013) Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed Chromatogr 27:148–155CrossRefPubMedGoogle Scholar
  20. Wang Y, Huang S, Shao S, Qian L, Xu P (2012) Studies on bioactivities of tea (Camellia sinensis L.) fruit peel extracts: Antioxidant activity and inhibitory potential against α-glucosidase and α-amylase in vitro. Ind Crop Prod 37:520–526CrossRefGoogle Scholar
  21. Zolek T, Paradowska K, Wawer I (2003) 13C CP MAS NMR and GIAO-CHF calculations of coumarins. Solid State Nucl Magn Reson 23:77–87CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Zühal Güvenalp
    • 1
  • Hilal Özbek
    • 1
  • Benan Dursunoğlu
    • 1
  • Hafize Yuca
    • 1
  • Sefa Gözcü
    • 2
  • Yeşim M. Çil
    • 3
  • Cavit Kazaz
    • 4
  • Kemalettin Kara
    • 5
  • Ömür L. Demirezer
    • 6
  1. 1.Department of PharmacognosyFaculty of Pharmacy, Atatürk UniversityErzurumTurkey
  2. 2.Department of PharmacognosyFaculty of Pharmacy, Erzincan UniversityErzincanTurkey
  3. 3.Department of Forestry and Forest ProductsOltu Vocational School, Atatürk UniversityErzurumTurkey
  4. 4.Department of ChemistryFaculty of Science, Atatürk UniversityErzurumTurkey
  5. 5.Department of AgronomyFaculty of Agriculture, Atatürk UniversityErzurumTurkey
  6. 6.Department of PharmacognosyFaculty of Pharmacy, Hacettepe UniversityAnkaraTurkey

Personalised recommendations