Skip to main content
Log in

Albizia harveyi: phytochemical profiling, antioxidant, antidiabetic and hepatoprotective activities of the bark extract

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Profiling the polyphenols in the methanol extract from the bark of Albizia harveyi was performed by HPLC–PDA–ESI–MS/MS analysis. The phytochemical analysis identified 39 compounds, the majority of them were flavan-3-ol derivatives and condensed tannins. Total phenolic content, determined by the Folin–Ciocalteu method amounted to 489 mg gallic acid equivalents/g extract. The extract showed promising antioxidant activities with an EC50 of 3.6 µg/mL and 18.32 mM FeSO4 equivalent/mg extract in radical scavenging assay and ferric reducing antioxidant power assays, respectively. The hepatoprotective potential of the extract in rats was determined in vivo in a d-galactosamine-induced liver toxicity model. A dose of 100 mg/kg (body weight) of the bark extract reduced levels of aspartate aminotransferase, gamma-glutamyltransferase and total bilirubin by 35.7, 65.3, and 23.8% (p < 0.05), respectively whereas glutathione was increased by 59.1%. These effects were similar to silymarin which was used as positive control. The extract (100 mg/kg (body weight) mediated a substantial antidiabetic response in streptozotocin-induced diabetic rats manifested by a significant reduction in serum glucose and lipid peroxides and significant increase of serum insulin. Docking of d-(+) catechin and the dimer (epi)catechin-(epi)catechin into the active site of the enzymes human pancreatic α-amylase, maltase-glucoamylase, and aldol reductase revealed that these enzymes may be possible targets via which, the studied Albizia harveyi extract could exert its antidiabetic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbas S, Wink M (2009) Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Med 75:216–221

    Article  CAS  PubMed  Google Scholar 

  • Ahmed D, Kumar V, Verma A, Gupta PS, Kumar H, Dhingra V, Mishra V, Sharma M (2014) Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizia lebbeck Benth. stem bark (ALEx) on streptozotocin induced diabetic rats. BMC 14:1

    Google Scholar 

  • Arumugam G, Manjula P, Paari N (2013) A review: anti diabetic medicinal plants used for diabetes mellitus. J Acute Dis 2:196–200

    Article  Google Scholar 

  • Balisteri W, Shaw L (1987) Liver function. In Tietz NW (ed) Fundamentals of clinical chemistry, 3rd edn. WB Saunders, Philadelphia, p 729–761

  • Bergantin C, Maietti A, Cavazzini A, Pasti L, Tedeschi P, Brandolini V, Marchetti N (2017) Bioaccessibility and HPLC-MS/MS chemical characterization of phenolic antioxidants in Red Chicory (Cichorium intybus). J Funct Foods 33:94–102

    Article  CAS  Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  • Brayer GD, Luo Y, Withers SG (1995) The structure of human pancreatic α‐amylase at 1.8 Å resolution and comparisons with related enzymes. Protein Sci. 4:1730–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenan JPM (1970) Flora Zambesiaca, 3, 1. Crown Agents for Oversea, London

    Google Scholar 

  • de Souza LM, Cipriani TR, Iacomini M, Gorin PA, Sassaki GL (2008) HPLC/ESI-MS and NMR analysis of flavonoids and tannins in bioactive extract from leaves of Maytenus ilicifolia. J Pharm Biomed Anal 47:59–67

    Article  PubMed  Google Scholar 

  • Del Rio D, Stewart AJ, Mullen W, Burns J, Lean ME, Brighenti F, Crozier A (2004) HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J Agric. Food Chem. 52:2807–2815

    Article  PubMed  Google Scholar 

  • Dixit AK, Misra LN (1997) Macrocyclic budmunchiamine alkaloids from Albizia lebbeck. J Nat Prod 60:1036–1037

    Article  CAS  Google Scholar 

  • Doumas BT, Watson WA, Biggs HG (1997) Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta 258:21–30

    Article  CAS  Google Scholar 

  • El-Mousallamy AMD (1998) Leaf flavonoids of Albizia lebbeck. Phytochemistry 48:759–761

    Article  CAS  PubMed  Google Scholar 

  • Fanfrlík Ji, Ruiz FX, Kadlčíková A, Řezáč J, Cousido-Siah A, Mitschler A, Haldar S, Lepšík M, Kolář MH, Majer P (2015) The effect of halogen-to-hydrogen bond substitution on human aldose reductase inhibition. ACS Chem Biol 10:1637–1642

    Article  PubMed  Google Scholar 

  • Gonzalez-Manzano S, Santos-Buelga C, Parez-Alonso JJ, Rivas-Gonzalo JC, Escribano-Bailan MT (2006) Characterization of the mean degree of polymerization of proanthocyanidins in red wines using liquid chromatography-mass spectrometry (LC-MS). J Agric Food Chem 54:4326–4332

    Article  CAS  PubMed  Google Scholar 

  • Gordon C, Yates A, Davies D (1985) Evidence for a direct action of exogenous insulin on the pancreatic islets of diabetic mice: islet response to insulin pre-incubation. Diabetologia 28:291–294

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes R, Barros L, Duenas M, Carvalho AM, Queiroz MJR, Santos-Buelga C, Ferreira IC (2013) Characterisation of phenolic compounds in wild fruits from Northeastern Portugal. Food Chem 141:3721–3730

    Article  CAS  PubMed  Google Scholar 

  • Hossain MB, Rai DK, Brunton NP, Martin-Diana AB, Barry-Ryan C (2010) Characterization of phenolic composition in Lamiaceae species by LC-ESI-MS/MS. J Agric Food Chem 58:10576–10581

    Article  CAS  PubMed  Google Scholar 

  • Kang TH, Jeong SJ, Kim NY, Higuchi R, Kim YC (2000) Sedative activity of two flavonol glycosides isolated from the flowers of Albizia julibrissin Durazz. J Ethnopharmacol 71:321–323

    Article  CAS  PubMed  Google Scholar 

  • Keppler D, Lesch R, Reutter W, Decker K (1968) Experimental hepatitis induced by D-galactosamine. Exp Mol Pathol 9:279–290

    Article  CAS  PubMed  Google Scholar 

  • Kokila K, Priyadharshini SD, Sujatha V (2013) Phytopharmacological properties of Albizia species: a review. Int J Pharm Pharm Sci 5:70–73

    CAS  Google Scholar 

  • Lee MS, Kerns EH (1999) LC/MS applications in drug development. Mass Spectrom Rev 18:187–279

    Article  CAS  PubMed  Google Scholar 

  • Lin L-Z, Harnly JM (2007) A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. J Agric Food Chem 55:1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maritim A, Sanders a, Watkins rJ (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38

    Article  CAS  PubMed  Google Scholar 

  • Mena P, Calani L, Dall’Asta C, Galaverna G, García-Viguera C, Bruni R, Crozier A, Del Rio D (2012) Rapid and comprehensive evaluation of (poly) phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules 17:14821–14840

    Article  CAS  PubMed  Google Scholar 

  • Michael, J, James MC, Vinay K (2000) The pancreas. In: Vinay K, Tucker C, Ramzi Sc (eds) Robbins and Cotran Pathalogic basis of disease, 6th edn. Harcourt publisher, San Diego, CA, p 902–929

  • Mohamed TK, Nassar MI, Gaara AH, El-Kashak WA, Brouard I, El-Toumy SA (2013) Secondary metabolites and bioactivities of Albizia anthelmintica. Pharmacogn Res 5:80

    Article  Google Scholar 

  • Mooradian AD, Thurman JE (1999) Drug therapy of postprandial hyperglycaemia. Drugs 57:19–29

    Article  CAS  PubMed  Google Scholar 

  • Murray R (1984) Alanine aminotransferase. In: Kaplan A et al. (eds) Clin Chem. The C.V. Mosby Co. Si louil. Tronto, Princeton, pp 1088–1090.

  • Nibret E, Ashour ML, Rubanza CD, Wink M (2010) Screening of some Tanzanian medicinal plants for their trypanocidal and cytotoxic activities. Phytother Res 24:945–947

    PubMed  Google Scholar 

  • Nichols BL, Avery S, Sen P, Swallow DM, Hahn D, Sterchi E (2003) The maltase-glucoamylase gene: common ancestry to sucrase-isomaltase with complimentary starch digestion activities. Proc Natl Acad Sci 100:1432–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols BL, Quezada-Calvillo R, Robayo-Torres CC, Ao Z, Hamaker BR, Butte NF, Marini J, Jahoor F, Sterchi EE (2009) Mucosal maltase-glucoamylase plays a crucial role in starch digestion and prandial glucose homeostasis of mice. J Nutr 139:684–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Omar HS, El-Beshbishy HA, Moussa Z, Taha KF, Singab ANB (2011) Antioxidant activity of Artocarpus heterophyllus Lam.(Jack Fruit) leaf extracts: remarkable attenuations of hyperglycemia and hyperlipidemia in streptozotocin-diabetic rats. Sci World J 11:788–800

    Article  Google Scholar 

  • Parola M, Robino G (2001) Oxidative stress-related molecules and liver fibrosis. J Hepatol 35:297–306

    Article  CAS  PubMed  Google Scholar 

  • Phillips M, Cataneo RN, Cheema T, Greenberg J (2004) Increased breath biomarkers of oxidative stress in diabetes mellitus. Clin Chim Acta 344:189–194

    Article  CAS  PubMed  Google Scholar 

  • Quezada-Calvillo R, Sim L, Ao Z, Hamaker BR, Quaroni A, Brayer GD, Sterchi EE, Robayo-Torres CC, Rose DR, Nichols BL (2008) Luminal starch substrate “brake” on maltase-glucoamylase activity is located within the glucoamylase subunit. J Nutr 138:685–692

    CAS  PubMed  Google Scholar 

  • Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50:567–575

    Article  CAS  PubMed  Google Scholar 

  • Ramana KV (2011) Aldose reductase: new insights for an old enzyme. Biomol Concept 2:103–114

    Article  CAS  Google Scholar 

  • Ren L, Qin X, Cao X, Wang L, Bai F, Bai G, Shen Y (2011) Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell 2:827–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rukunga GM, Waterman PG (1996) Spermine alkaloids from Albizia schimperiana. Phytochemistry 42:1211–1215

    Article  CAS  Google Scholar 

  • Rydberg EH, Sidhu G, Vo HC, Hewitt J, Cote HC, Wang Y, Numao S, Macgillivray RT, Overall CM, Brayer GD (1999) Cloning, mutagenesis, and structural analysis of human pancreatic [alpha]-amylase expressed in Pichia pastoris. Protein Sci 8:635–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setshogo MP (2005) Preliminary checklist of the plants of Botswana. Southern African Botanical Diversity Network Report No. 37. SABONET, Pretoria and Gaborone

  • Sicree R, Shaw J, Zimmet P (2006) Diabetes and impaired glucose tolerance. Diabetes Atlas, 3rd edn. International Diabetes Federation, Belgium

  • Simsek M, Quezada-Calvillo R, Ferruzzi MG, Nichols BL, Hamaker BR (2015) Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release. J Agric Food Chem 63:3873–3879

    Article  CAS  PubMed  Google Scholar 

  • Sobeh M, ElHawary EA, Peixoto H, Labib RM, Handoussa H, Swilam N, El-Khatib AH, Sharapov F, Mahmoud T, Krstin S, Linscheid MW, Singab ANB, Wink M Ayoub N (2016a) Identification of phenolic secondary metabolites from Schotia brachypetala Sond.(Fabaceae) and demonstration of their antioxidant activities in Caenorhabditis elegans. PeerJ. doi:10.7717/peerj.2404

  • Sobeh M, Mamadalieva NZ, Mohamed T, Krstin S, Youssef FS, Ashour ML, Azimova SS, Wink M (2016b) Chemical profiling of Phlomis thapsoides (Lamiaceae) and in vitro testing of its biological activities. Med Chem Res 25:2304–2315

    Article  CAS  Google Scholar 

  • Sobeh M, Mahmoud MF, Abdelfattah MAO, El-Beshbishy HA, El-Shazly AM, Wink M (2017) Hepatoprotective and hypoglycemic effects of a tannin rich extract from Ximenia americana var. caffra root. Phytomedicine 33:36–42

  • Spitaler M, Graier W (2002) Vascular targets of redox signalling in diabetes mellitus. Diabetologia 45:476–494

    Article  CAS  PubMed  Google Scholar 

  • Stefek M, Soltesova Prnova M, Majekova M, Rechlin C, Heine A, Klebe G (2015) Identification of novel aldose reductase inhibitors based on carboxymethylated mercaptotriazinoindole scaffold. J Med Chem 58:2649–2657

    Article  CAS  PubMed  Google Scholar 

  • Szasz G, Persijn JPE,C (1974) Kinetic method for quantitative determination of gammaglutamyl transpeptidase. Z Klin Chem Klin Biochem 12:228

    CAS  PubMed  Google Scholar 

  • Tala VRS, Candida da Silva V, Rodrigues CM, Nkengfack AE, Campaner dos Santos L, Vilegas W (2013) Characterization of proanthocyanidins from Parkia biglobosa (Jacq.) G. Don. (Fabaceae) by flow injection analysis-electrospray ionization ion trap tandem mass spectrometry and liquid chromatography/electrospray ionization mass spectrometry. Molecules 18:2803–2820

    Article  CAS  PubMed  Google Scholar 

  • Timberlake JR, Childes SL (2004) Biodiversity of the four corners area: technical reviews Volume Two (Chapter 5-15) Appendix 5-1: Plant Checklist. Occas Publ Biodivers 15:179

    Google Scholar 

  • Trinder P (1969) Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22:158–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams LK, Li C, Withers SG, Brayer GD (2012) Order and disorder: differential structural impacts of myricetin and ethyl caffeate on human amylase, an antidiabetic target. J Med Chem 55:10177–10186

    Article  CAS  PubMed  Google Scholar 

  • Yabe-Nishimura C (1998) Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev 50:21–34

    CAS  PubMed  Google Scholar 

  • Yilmazer-Musa M, Griffith AM, Michels AJ, Schneider E, Frei B (2012) Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. J Agric Food Chem 60:8924–8929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young DS (1995) Effects of drugs on clinical laboratory tests. The American Association for Clinical Chemistry. Young, Washington, DC

  • Youssef FS, Ashour ML, Ebada SS, Sobeh M, El-Beshbishy HA, Singab AN, Wink M (2017) Antihyperglycaemic activity of the methanol extract from leaves of Eremophila maculata (Scrophulariaceae) in streptozotocin-induced diabetic rats. J Pharm Pharmacol. 69: 733–742

  • Youssef FS, Ashour ML, Sobeh M, El-Beshbishy HA, Singab AN, Wink M (2016) Eremophila maculata- Isolation of a rare naturally-occurring lignan glycoside and the hepatoprotective activity of the leaf extract. Phytomedicine 23:1484–1493

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Zheng J, Zhao Y, Wang B, Wu L, Liang H (2006) Three anti-tumor saponins from Albizia julibrissin. Bioorg Med Chem Lett 16:2765–2768

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. C. D. Rubanza (Tanzania Forestry Research Institute, Shinyanga, Tanzania) for plant collection and Dr. B. Wetterauer (IPMB) for his help in collecting LC-MS data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mansour Sobeh or Michael Wink.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobeh, M., Mahmoud, M.F., Abdelfattah, M.A.O. et al. Albizia harveyi: phytochemical profiling, antioxidant, antidiabetic and hepatoprotective activities of the bark extract. Med Chem Res 26, 3091–3105 (2017). https://doi.org/10.1007/s00044-017-2005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-2005-8

Keywords

Navigation