Medicinal Chemistry Research

, Volume 26, Issue 12, pp 3077–3090 | Cite as

Design and synthesis of new coumarin–chalcone/NO hybrids of potential biological activity

  • Hany A. El-Sherief
  • Gamal El-Din A. Abuo-Rahma
  • Mai E. Shoman
  • Eman A. Beshr
  • Rehab M. Abdel-baky
Original Research


This study aims at investigating a synthesis approach based on molecular hybridization strategy through grafting an nitric oxide-releasing moiety, oxime, to coumarin–chalcone hybrids. In vitro anti-proliferative activity of some of the prepared compounds showed moderate activity (growth inhibition values = 45.85, 40.86, 39.25 for compound 8a against leukemia, Central Nervous system and breast cancer cells, respectively). Also, IC50 = 9.62 and 14.40 for compounds 8h and 8f, respectively against breast Michigan Cancer Foundation-7 cell lines. The antibacterial screening results suggest a possible role for nitric oxide in enhancement of the antibacterial activity where nitric oxide is not the only factor but other factors like physicochemical properties should be investigated for their potential role on the activity.

Graphical abstract

Open image in new window


Coumarins Chalcones Anti-proliferative Antibacterial Nitric oxide donors Oximes 



Thanks to Faculty of Pharmacy, Minia University, Minia, Egypt, and Faculty of Pharmacy, Nahda University at Beni-Suef for their help in conducting the current research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

44_2017_2004_MOESM1_ESM.docx (713 kb)
Supplementary Information


  1. Abdel-Aziz M, Park SE, Abuo-Rahma GAA, Sayed MA, Kwon Y (2013) Novel N-4-piperazinyl-ciprofloxacin-chalcone hybrids: synthesis, physicochemical properties, anticancer and topoisomerase I and II inhibitory activity. Eur J Med Chem 69:427–438CrossRefPubMedGoogle Scholar
  2. Amaral S, Mira L, Nogueira JMF, da Silva AP, Florencio MH (2009) Plant extracts with anti-inflammatory properties—a new approach for characterization of their bioactive compounds and establishment of structure–antioxidant activity relationships. Bioorg Med Chem 17:1876–1883CrossRefPubMedGoogle Scholar
  3. Andreadou I, IIiodromitis EK, Rassaf T, Schulz R, Papepetropoulos A, Ferdinandy P (2015) The role of gasotransmitters NO, H2S, CO in myocardial ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Br J Pharmacol 172:1587–1606CrossRefPubMedGoogle Scholar
  4. Bandgar BP, Gawande SS, Bodade RG, Gawande NM, Khobragade CN (2009) Synthesis and biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents. Bioorg Med Chem 17:8168–8173CrossRefPubMedGoogle Scholar
  5. Gemeda N, Urga K, Tadele A, Lemma H, Melaku D, Mudie K (2008) Antimicrobial activity of topical formulation containing Eugenia caryophyllata L. (Krunfud) and Myritus communis L. (Ades)essential oils on selected skin disease causing microorganisms. Ethiop J Health Sci 18:101–107Google Scholar
  6. Borges F, Roleira F, Milhazes N, Santana L, Uriarte E (2005) Simple coumarins and analogs in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem 12:887–916CrossRefPubMedGoogle Scholar
  7. Decker M (2011) Hybrid molecules incorporating natural products: applications in cancer therapy, neurodegenerative disorders and beyond. Curr Med Chem 18:1464–1475CrossRefPubMedGoogle Scholar
  8. Di Carlo G, Mascolo N, Izzo AA, Capasso F (1999) Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 65:337–353CrossRefPubMedGoogle Scholar
  9. Ducki S (2009) Antimitotic chalcones and related compounds as inhibitors of tubulin assembly. Anticancer Agents Med Chem 9:336–347CrossRefPubMedGoogle Scholar
  10. Dyrager C, Wickstrom M, Friden-Saxin M, Friberg A, Dahlen K, Wallen EAA, Gullbo J, Grøtli M, Luthman M (2011) Inhibitors and promoters of tubulin polymerization: synthesis and biological evaluation of chalcones and related dienones as potential anticancer agents. Bioorg Med Chem 19:2659–2665CrossRefPubMedGoogle Scholar
  11. El-koussi NA, Abdel-rahman HM (2006) Novel 1,2,4-triazole-3-mercaptoacetic acid derivatives as potential antimycobacterial and antimicrobial agents. Bull Pharm Sci 29:127–136Google Scholar
  12. Fang FC (2012) Antimicrobial actions of nitric oxide. Nitric Oxide 27:1–10CrossRefGoogle Scholar
  13. Forrester K, Ambs S, Lupold SE, Kapust RB, Spillare E, Weinberg WC, Felley-Bosco E, Wang XW, Geller D, Tzeng E, Billiar TR, Harris CC (1996) Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA 93:2442–2447CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumor progression. Nat Rev Cancer 6:521–534CrossRefPubMedGoogle Scholar
  15. Go ML, Wu X, Liu XL (2005) Chalcones: an update on cytotoxic and chemoprotective properties. Curr Med Chem 12:483–499CrossRefGoogle Scholar
  16. Gong JX, Huang KX, Wang F, Yang LX, Feng YB, Li HB, Li XK, Zeng S, Wu XM, Stoeckigt J, Zhao Y, Qu J (2009) Preparation of two sets of 5,6,7-trioxygenated dihydroflavonol derivatives as free radical scavengers and neuronal cell protectors to oxidative damage. Bioorg Med Chem 17:3414–3425CrossRefPubMedGoogle Scholar
  17. Hickok JR, Thomas DD (2013) Nitric oxide and cancer therapy: the emperor has NO clothes. Curr Pharm Des 16:381–391CrossRefGoogle Scholar
  18. Jamier V, Marut W, Valente S, Chereau C, Chouzenoux S, Nicco C, Lemarechal H, Weill B, Kirsch G, Jacob C, Batteux F (2014) Chalcone–coumarin derivatives as potential anti-cancer drugs: an in vitro and in vivo investigation. Anticancer Agents Med Chem 14:963–974CrossRefPubMedGoogle Scholar
  19. Joule JA, Mills K (2010) Heterocyclic chemistry 5th ed, Chichester, Wiley-BlackwellGoogle Scholar
  20. Kachadourian R, Day BJ, Pugazhenti S, Franklin CC, Genoux-Bastide E, Mahaffey G, Gauthier C, Di Pietro A, Boumendjel AA (2012) Synthetic chalcone as a potent inducer of glutathione biosynthesis. J Med Chem 55:1382–1388CrossRefPubMedPubMedCentralGoogle Scholar
  21. Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298:249–58CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kumar V, Kumar S, Hassan M, Wu H, Thimmulappa RK, Kumar A, Sharma SK, Parmar VS, Biswal S, Malhotra SV (2011) Novel chalcone derivatives as potent Nrf2 activators in mice and human lung epithelial cells. J Med Chem 54:4147–4159CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kostova I, Bhatia S, Grigorov P, Balkansky S, Parmar VS, Prasad AK, Saso L (2011) Coumarin as antioxidants. Curr Med Chem 18:3929–3951CrossRefPubMedGoogle Scholar
  24. Lacy A, O’Kennedy R (2004) Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr Pharm Des 10:3797–3811CrossRefPubMedGoogle Scholar
  25. Luo Y, Song R, Li Y, Zhang S, Liu ZJ, Fu J, Zhu HL (2012) Design, synthesis, and biological evaluation of chalcone oxime derivatives as potential immunosuppressive agents. Bioorg Med Chem Lett 22:3039–3043CrossRefPubMedGoogle Scholar
  26. Maciag AE, Holland RJ, Robert Cheng YS, Rodriguez LG, Saavedra JE, Anderson LM (2013) Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance. Redox Biol 1:115–124CrossRefPubMedPubMedCentralGoogle Scholar
  27. Matos MJ, Vazquez-Rodriguez S, Uriarte E, Santana L, Viña D (2011) MAO inhibitory activity modulation: 3-phenylcoumarins versus 3-benzoylcoumarins. Bioorg Med Chem Lett 21:4224–4227CrossRefPubMedGoogle Scholar
  28. Matos MJ, Vazquez-Rodriguez S, Santana L, Uriarte E, Fuentes-Edfuf C, Santos Y, Muñoz-Crego A (2012a) Looking for new targets: simple coumarins as antibacterial agents. Med Chem 8:1140–1145PubMedGoogle Scholar
  29. Matos MJ, Ferino G, Cadoni E, Laguna R, Borges F, Uriarte E, Santana L (2012b) 8-Substituted 3-arylcoumarins as potent and selective MAO-B inhibitors: synthesis, pharmacological evaluation, and docking studies. Chem Med Chem 7:464–470CrossRefPubMedGoogle Scholar
  30. Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751PubMedGoogle Scholar
  31. Moncada S, Higgs A (1993) The l-arginine–nitric oxide pathway. N Engl J Med 329:2002–2012CrossRefPubMedGoogle Scholar
  32. Gangadevi V, Muthumary J (2007) Preliminary studies on cytotoxic effect of fungal taxol on cancer cell lines. African J Biotechnol 6:1382–86Google Scholar
  33. Pérez-Cruz F, Vazquez-Rodriguez S, Matos MJ, Herrera-Morales A, Villamena FA, Das A, Gopalakrishnan B, Olea-Azar C, Santana L, Uriarte E (2013) Synthesis and electrochemical and biological studies of novel coumarin−chalcone hybrid compounds. J Med Chem 56: 6136–6145CrossRefPubMedGoogle Scholar
  34. Pick A, Muller H, Mayer R, Haenisch B, Pajeva IK, Weigt M, Bonisch H, Muller CE, Wiese M (2011) Structure–activity relationships of flavonoids as inhibitors of breast cancer resistance protein (BCRP). Bioorg Med Chem 19:2090–2102CrossRefPubMedGoogle Scholar
  35. Pingaew R, Saekee A, Mandi B, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V (2014) Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. Eur J Med Chem 85:65–76CrossRefPubMedGoogle Scholar
  36. Chun Wai M, Marzieh Y, Noorsaadah Abd-R, Yew Beng K, Mallikarjuna Rao P (2014) Chalcones with electron-withdrawing and electron-donating substituents: anticancer activity against TRAIL resistant cancer cells, structure–activity relationship analysis and regulation of apoptotic proteins. Eur J Med Chem 77:378–387CrossRefGoogle Scholar
  37. Rao HSP, Tangeti VS (2012) Synthesis of 3-aroylcoumarin-flavone hybrids. Lett Org Chem 9:218–220CrossRefGoogle Scholar
  38. Vicini P, Geronikaki A, Anastasia K, Incerti M, Zani F (2006) Synthesis and antimicrobial activity of novel 2-thiazolylimino-5-arylidene-4-thiazolidinones. Bioorg Med Chem 14:3859–64CrossRefPubMedGoogle Scholar
  39. Rackova L, Firakova S, Kostalova D, Stefek M, Sturdik E, Majekova M (2005) Oxidation of liposomal membrane suppressed by flavonoids: quantitative structure–activity relationship. Bioorg Med Chem 13:6477–6484CrossRefPubMedGoogle Scholar
  40. Riveiro ME, De Kimpe N, Moglioni A, Vazquez R, Monczor F, Shayo C (2010) Coumarins: old compounds with novel promising therapeutic perspectives. Curr Med Chem 17:1325–1338CrossRefPubMedGoogle Scholar
  41. Rtishchev NI, Nosova GI, Solovskaya NA, Luk’yashina VA, Galaktionova EF, Kudryavtsev VV (2001) Spectral properties and photochemical activity of chalcone derivatives. Russ J Gen Chem 71:1272–1281CrossRefGoogle Scholar
  42. Sahu NK, Balbhadra SS, Choudhary J, Kohli DV (2012) Exploring pharmacological significance of chalcone scaffold: a review. Curr Med Chem 19:209–225CrossRefPubMedGoogle Scholar
  43. Secci D, Carradori S, Bolasco A, Chimenti P, Yañez M, Ortuso F, Alcaro S (2011) Synthesis and selective human monoamine oxidase inhibition of 3-carbonyl, 3-acyl, and 3-carboxyhydrazido coumarin derivatives. Eur J Med Chem 46:4846–4852CrossRefPubMedGoogle Scholar
  44. Serra S, Chicca A, Delogu G, Vazquez-Rodriguez S, Santana L, Uriarte E, Casu L, Gertsch J (2012) Synthesis and cytotoxic activity of non-naturally substituted 4-oxycoumarin derivatives. Bioorg Med Chem Lett 22:5791–5794CrossRefPubMedGoogle Scholar
  45. Singh N, Sarkar J, Sashidhara KV, Ali S, Sinha S (2014) Anti-tumor activity of a novel coumarin–chalcone hybrid is mediated through intrinsic apoptotic pathway by inducing PUMA and altering Bax/Bcl-2 ratio. Apoptosis 19:1017–1028CrossRefPubMedGoogle Scholar
  46. Thimons M, Chua CA, Achalabun M (1998) The Pechmann reaction. J Chem Ed 75:12CrossRefGoogle Scholar
  47. Torres-Rasgado E, Fouret G, Carbonneau MA, Leger CL (2007) Peroxynitrite mild nitration of albumin and LDL–albumin complex naturally present in plasma and tyrosine rate-albumin impairs LDL nitration. Free Radic Res 41:367–375CrossRefPubMedGoogle Scholar
  48. Tsikas D (2007) Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the l-arginine/nitric oxide area of research. J Chromatogr B 851:51–70CrossRefGoogle Scholar
  49. Valdameri G, Gauthier C, Terreux R, Kachadourian R, Day BJ, Winnischofer SMB, Rocha MEM, Frachet V, Ronot X, Di Pietro A, Boumendjel A (2012) Investigation of chalcones as selective inhibitors of the breast cancer resistance protein: critical role of methoxylation in both inhibition potency and cytotoxicity. J Med Chem 55:3193–3200CrossRefPubMedPubMedCentralGoogle Scholar
  50. Vasudevan D, Thomas DD (2014) Insights into the diverse effects of nitric oxide on tumor biology. Vitam Horm 96:265–298CrossRefPubMedGoogle Scholar
  51. Vazquez-Rodriguez S, Matos MJ, Santana L, Uriarte E, Borges F, Kachler S, Klotz KN (2013) Chalcone-based derivatives as new scaffolds for hA3 adenosine receptor antagonists. J Pharm Pharmacol 65:697–703CrossRefPubMedGoogle Scholar
  52. Velázquez C, Praven Rao PN, McDonald R, Knaus EE (2005) Synthesis and biological evaluation of 3,4-diphenyl-1,2,5-oxadiazole-2-oxides and 3,4-diphenyl-1,2,5-oxadiazoles as potential hybrid COX-2 inhibitor/nitric oxide donor agents. Bioorg Med Chem 13:2749–2757CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Pharmaceutical Chemistry Department, Faculty of PharmacyNahda UniversityBenisuefEgypt
  2. 2.Medicinal Chemistry Department, Faculty of PharmacyAl-Jouf UniversityAl-JoufSaudi Arabia
  3. 3.Medicinal Chemistry Department, Faculty of PharmacyMinia UniversityMiniaEgypt
  4. 4.Pharmaceutical Chemistry Department, College of PharmacyUmm Al-Qura UniversityMekkaSaudi Arabia
  5. 5.Microbiology and Immunology department, Faculty of PharmacyMinia UniversityMiniaEgypt

Personalised recommendations