Medicinal Chemistry Research

, Volume 26, Issue 10, pp 2624–2638 | Cite as

Anticancer activities, molecular docking and structure–activity relationship of novel synthesized 4H-chromene, and 5H-chromeno[2,3-d]pyrimidine candidates

  • Ahmed H. Halawa
  • Mahmoud M. Elaasser
  • Ahmed M. El Kerdawy
  • Ahmed M. A. I. Abd El-Hady
  • Hassein A. Emam
  • Ahmed M. El-Agrody
Original Research

Abstract

In the present study, a series of 4H-chromene and 5H-chromeno[2,3-d]pyrimidine derivatives was synthesized and evaluated as potential cytotoxic agents. The cytotoxic activities of the target compounds were evaluated against four cancer cell lines MCF-7, HCT-116, HepG-2, and A549 in comparison with vinblastine and colchicine as reference drugs. We explored the structure–activity relationship of 4H-chromenes with modification at the 2-,4- or 7-position, and fused pyrimidine ring at 2,3-position. Most of the screened compounds showed marginal antitumor activity against the different cell lines in comparison to the standard drugs. The structure–activity relationship study revealed that the antitumor activity of the synthesized compounds was significantly affected by the lipophilicity of the substituent at the 2-,4- or 7-position for the 4H-chromenes, and 5,8-position or fused pyrimidine ring at 2,3-positions for 5H-chromeno[2,3-d]pyrimidines. Structure–activity relationship was elaborated with the help of molecular docking studies. The structures of the synthesized compounds were established on the basis of the spectral data, infrared, proton nuclear magnetic resonance, 13-Carbon nuclear magnetic resonance and mass spectroscopic data.

Keywords

4H-Chromene 5H-Chromeno[2,3-d]pyrimidine Antitumor Lipophilicity SAR Molecular docking 

Notes

Acknowledgements

The authors deeply thank the RCMP, Al-Azhar University for carrying out the antitumor study and Elemental analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Abd-El-Aziz AS, El-Agrody AM, Bedair AH, Corkery TC, Ata A (2004) Synthesis of hydroxyquinoline derivatives, aminohydroxychromene, aminocoumarin and their antimicrobial activities. Heterocycles 63:1793–1812CrossRefGoogle Scholar
  2. Ahmed S, Pecqueur L, Dreier B, Hamdane D, Aumont-Nicaise M, Plückthun A, Knossow M, Gigant B (2016) Destabilizing an interacting motif strengthens the association of a designed ankyrin repeat protein with tubulin. Sci Rep 6:28922CrossRefGoogle Scholar
  3. Akbarzadeh T, Rafinejad A, Malekian Mollaghasem J, Safavi M, Fallah-Tafti A, Pordeli M, Kabudanian Ardestani S, Shafiee A, Foroumadi A (2012) 2-Amino-3-cyano-4-(5-arylisoxazol-3-yl)-4H-chromenes: synthesis and in vitro cytotoxic activity. Arch Pharm 345:386–392CrossRefGoogle Scholar
  4. Bhat M, Siddiqui N, Khan S (2008) Synthesis of novel 3-(4-acetyl-5H/methyl-5-substituted phenyl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2H-chromen-2-ones as potential anticonvulsant agents. Acta Pol Pharm 65:235–239PubMedGoogle Scholar
  5. Bingi C, Emmadi NR, Chennapuram M, Poornachandra Y, Kumar CG, Nanubolu JB, Atmakur K (2015) One-pot catalyst free synthesis of novel kojic acid tagged 2-aryl/alkyl substituted-4H-chromenes and evaluation of their antimicrobial and anti-biofilm. Bioorg Med Chem Lett 25:1915–1919CrossRefPubMedGoogle Scholar
  6. Birch KA, Heath WF, Hermeling RN, Johnston CM, Stramm L, Dell C, Smith C, Williamson JR, Reifel-Miller A (1996) LY290181, an inhibitor of diabetes induced vascular dysfunction, blocks protein kinase C-stimulated transcriptional activation through inhibition of transcription factor binding to a phorbol response element. Diabetes 45:642–650CrossRefPubMedGoogle Scholar
  7. Cheng JF, Ishikawa A, Ono Y, Arrhenius T, Nadzan A (2003) Novel chromene derivatives as TNF-α inhibitors. Bioorg Med Chem Lett 13:3647–3650CrossRefPubMedGoogle Scholar
  8. Chetan BS, Nimesh MS, Manish PP, Ranjan GP (2012) Microwave assisted synthesis of novel 4H-chromene derivatives bearing phenoxypyrazole and their antimicrobial activity assess. J Serbian Chem Soc 77:1–17CrossRefGoogle Scholar
  9. Doshi JM, Tian D, Xing C (2006) Structure-activity relationship studies of ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA 14-1), an antagonist for antiapoptotic Bcl-2 proteins to overcome drug resistance in cancer. J Med Chem 49:7731–7739CrossRefPubMedGoogle Scholar
  10. El-Agrody AM, Halawa AH, Fouda AM, Al-Dies AM (2016) Anti-proliferative activity of novel 4H-benzo[h]chromenes, 7H-benzo[h]chromeno[2,3-d]pyrimidines and the structure–activity relationships of the 2-, 3-positions and fused rings at the 2, 3-positions. J Saudi Chem Soc. doi: 10.1016/j.jscs.2016.03.002
  11. El-Agrody AM, Khattab ESAEH, Fouda AM (2014) Synthesis, structure-activity relationship (SAR) studies on some 4-Aryl-4H-chromenes and relationship between lipophilicity and antitumor activity. Lett Drug Des Discov 11:1167–1176CrossRefGoogle Scholar
  12. Fouda AM (2016) Synthesis of several 4H-chromene derivatives of expected antitumor activity. Med Chem Res 25:1229–1238CrossRefGoogle Scholar
  13. Kandeel MM, Kamal AM, Abdelall EKA, Elshemy HAH (2013) Synthesis of novel chromene derivatives of expected antitumor activity. Eur J Med Chem 59:183–193CrossRefPubMedGoogle Scholar
  14. Kathrotiya HG, Patel MP (2012) Microwave-assisted synthesis of 3′-indolyl substituted 4H- chromenes catalyzed by DMAP and their antimicrobial activity. Med Chem Res 21:3406–3416CrossRefGoogle Scholar
  15. Kemnitzer W, Kasibhatla S, Jiang S, Zhang H, Zhao J, Jia S, Xu L, Crogan-Grundy C, Denis R, Barriault N, Vaillancourt L, Charron S, Dodd J, Attardo G, Labrecque D, Lamothe S, Gourdeau H, Tseng B, Drewe J, Cai SX (2005) Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure– activity relationships of the 7- and 5-, 6-, 8-positions. Bioorg Med Chem Lett 5:4745–4751CrossRefGoogle Scholar
  16. Khafagy MM, Abd El-Wahab AHF, Eid FA, El-Agrody AM (2002) Synthesis of halogen derivatives of benzo[h]cheromene and benzo[a]anthracene with promising antimicrobial activities. Farmaco 57:715–722CrossRefPubMedGoogle Scholar
  17. Kheirollahi A, Pordeli M, Safavi M, Mashkouri S, Naimi-Jamal MR, Ardestani SK (2014) Cytotoxic and apoptotic affects of synthetic benzochromene derivatives on human cancer cell lines. Naunyn Schmiedebergs Arch Pharmacol 387:1199–1208CrossRefPubMedGoogle Scholar
  18. Killander D, Sterner O (2014) Synthesis of the bioactive benzochromenes pulchrol and pulchral, metabolites. Eur J Org Chem 8:1594–1596CrossRefGoogle Scholar
  19. Lu Y, Chen J, Xiao M, Li W, Miller DD (2012) An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res 29:2943–2971CrossRefPubMedPubMedCentralGoogle Scholar
  20. Magedov IV, Manpadi M, Evdokimov NM, Elias EM, Rozhkova E, Ogasawara MA, Bettale JD, Przheval’skii NM, Rogelj S, Kornienko A (2007) Antiproliferative and apoptosis inducing properties of pyrano[3,2-c]pyridones accessible by a one-step multicomponent synthesis. Bioorg Med Chem Lett 17:3872–3876CrossRefPubMedPubMedCentralGoogle Scholar
  21. Makarem S, Mohammadi AA, Fakhari AR (2008) Multicomponet electroorganic synthesis of 2-amino-4H-chromenes. Tetrhedron Lett 49:7194–7196CrossRefGoogle Scholar
  22. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  23. Musa MA, Badisa VLD, Latinwo LM, Waryoba C, Ugochukwu N (2010) In vitro cytotoxicity of benzopyranone derivatives with basic side chain against human lung cell lines. Anticancer Res 30:4613–4617PubMedPubMedCentralGoogle Scholar
  24. Nareshkumar J, Jiayi X, Ramesh MK, Fuyong D, Guo JZ, Emmanuel P (2009) Identification and structure-activity relationships of chromene-derived selective estrogen receptor modulators for treatment of postmenopausal symptoms. J Med Chem 52:7544–7569CrossRefGoogle Scholar
  25. Nefzi A, Ostresh JM, Houghten RA (1997) The current status of heterocyclic combinatorial libraries. Chem Rev 97:449–472CrossRefPubMedGoogle Scholar
  26. Nimesh RK, Dhaval DH, Prashant TM, Saurabh KP (2011) Synthesis and evaluation of in vitro antitubercular activity and antimicrobial activity of some novel 4H-chromeno[2,3-d]pyrimidine via 2-amino-4-phenyl-4H-chromene-3-carbonitriles. Med Chem Res 20:854–864CrossRefGoogle Scholar
  27. Olczak SA, Nazarski RB, Lewgowd W, Czyz M, Stanczak A (2013) Synthesis and biological evaluation of new bischromone derivatives with antiproliferative activity. Arch Pharm Chem 346:34–43CrossRefGoogle Scholar
  28. Patil SA, Patil R, Pfeffer LM, Miller DD (2013) Chromenes: potential new chemotherapeutic agents for cancer. Future Med Chem 5:1647–1660CrossRefPubMedGoogle Scholar
  29. Parthiban A, Kumaravel M, Muthukumaran J, Rukkumani R, Krishna R, Rao HSP (2015) Design, synthesis, in vitro and in silico anti-cancer activity of 4H-chromenes with C4-active methine groups. Med Chem Res 24:1226–1240CrossRefGoogle Scholar
  30. Rafinejad A, Fallah-Tafti A, Tiwari R, Shirazi AN, Mandal D, Shafiee A, Parang K, Foroumadi A, Akbarzadeh T (2012) 4-Aryl-4H-naphthopyrans derivatives: one-pot synthesis, evaluation of Srckinase inhibitory and anti-proliferative activities. DARU J Pharm Sci 20:100–106CrossRefGoogle Scholar
  31. Rahman AU, Choudhary MI, Thomsen WJ (2001) Bioassay techniquefor drug development. Harwood Academic Publishers; ISBN0-203-34349-2 (Adobe e-Reader Format), ISBN 90-5823-051-1(Print Edition)Google Scholar
  32. Sabry NM, Mohamed HM, Khattab ESAEH, Motlaq SS, El-Agrody AM (2011) Synthesis of 4H-chromene, coumarin, 12H-chromeno[2,3-d]pyrimidine derivatives and some of their antimicrobial and cytotoxicity activities. Eur J Med Chem 46:765–772CrossRefPubMedGoogle Scholar
  33. Saffari Z, Aryapour H, Akbarzadeh A, Foroumadi A, Jafari N, Zarabi MF, Farhangi A (2014) In vitro antitumor evaluation of 4H-chromene-3-carbonitrile derivatives as a new series of apoptotic inducers. Tumor Biol 35:5845–5855CrossRefGoogle Scholar
  34. Singh OM, Devi NS, Thokchom DS, Sharma GJ (2010) Novel 3-alkanoyl/aroyl/-heteroaroyl-2H-chromene-2-thiones: synthesis and evaluation of their antioxidant activities. Eur J Med Chem 45:2250–2257CrossRefPubMedGoogle Scholar
  35. Thomas N, Zachariah SM (2013) In Silico drug design and analysis of 4-Phenyl-4H-chromene derivatives as anticancer and anti-inflammatory agents. Int J Pharm Sci Rev Res 22:50–54Google Scholar
  36. Thompson LA (2000) Recent applications of polymer-supported reagents and scavengers in combinatorial, parallel, or multistep synthesis. Curr Opin Chem Biol 4:324–337CrossRefPubMedGoogle Scholar
  37. Vala ND, Jardosh HH, Patel MP (2016) 5- PS-TBD triggered general protocol for the synthesis of 4H-chromenes, pyrano[4,3-b]pyran and pyrano[3,2-c]chromene derivatives of 1H-pyrazole and their biological activities. Chin Chem Lett 27:168–172CrossRefGoogle Scholar
  38. Vukovic N, Sukdolak S, Solujic S, Niciforovic N (2010) Substituted imino and amino derivatives of 4-hydroxycoumarins as novel antioxidant, antibacterial and antifungal agents: synthesis and in vitro assessments. Food Chem 120:1011–1018CrossRefGoogle Scholar
  39. Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 97:7124–7129CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wiener C, Schroeder CH, West BD, Link KP (1962) Studies on the 4-hydroxycoumarins. XVIII. 3-[α-(acetamidomethyl)benzyl]-4-hydroxycoumarin and related products. J Org Chem 27:3086–3088CrossRefGoogle Scholar
  41. Zhang D, Ma Y, Liu Y, Liu ZP (2014) Synthesis of sulfonylhydrazone-and acylhydrazone-substituted 8-ethoxy-3-nitro-2H-chromenesas potent antiproliferative and apoptosis inducing agents. Arch Pharm Chem 347:576–588CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ahmed H. Halawa
    • 1
  • Mahmoud M. Elaasser
    • 2
  • Ahmed M. El Kerdawy
    • 3
  • Ahmed M. A. I. Abd El-Hady
    • 1
  • Hassein A. Emam
    • 1
  • Ahmed M. El-Agrody
    • 1
  1. 1.Chemistry Department, Faculty of ScienceAl-Azhar UniversityNasr CityEgypt
  2. 2.The Regional Center for Mycology & Biotechnology (RCMP)Al-Azhar UniversityNasr CityEgypt
  3. 3.Department of Pharmaceutical Chemistry, Faculty of PharmacyCairo University11562 CairoEgypt

Personalised recommendations