Medicinal Chemistry Research

, Volume 26, Issue 10, pp 2568–2582 | Cite as

Synthesis, antioxidant, and antiviral properties of pyrimidinylsulfamoyl azolyl acetamides

  • Kuppi Reddy Gari Divya
  • Donthamsetty V. Sowmya
  • Suram Durgamma
  • Vadlamudi Tharanath
  • Divi Venkataramana Sai Gopal
  • Malaka Venkateshwarulu Jyothi Kumar
  • Chippada Appa Rao
  • Adivireddy Padmaja
  • Venkatapuram Padmavathi
Original Research


A new class of pyrimidinylsulfamoyl azolyl acetamides was prepared from 2-pyrimidinylsulfamoyl acetic acid and 2-aminoazoles. The methoxy substituted pyrimidinylsulfamoyl oxazolyl acetamide (8e) displayed moderate antioxidant activity. The methyl and methoxy substituted pyrimidinylsulfamoyl oxazolyl acetamides (8b, 8e) exhibited antiviral activity on BHK 21 cell lines with IC50 63.5, 44.5 µg/mL, respectively. The compound 8e inhibited cytopathic changes induced by Blue Tongue Virus in cell lines.


Azoles Pyrimidines Antioxidant activity Antiviral activity 



We are grateful to BRNS (Board of Research in Nuclear Sciences) Trombay, Mumbai-400085 for financial assistance under major research project. One of the authors, K.D. is thankful to University Grants Commission (UGC), New Delhi for the sanction of UGC-BSR fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Achar KCS, Hosamani KM, Seetharamareddy HR (2010) In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives. Eur J Med Chem 45:2048–2054CrossRefPubMedGoogle Scholar
  2. Ali A, Reddy GSKK, Cao H, Anjum SG, Nalam MNL, Schiffer CA, Rana TM (2006) Discovery of HIV-1 protease inhibitors with picomolar affinities incorporating N-Aryl-oxazolidinone-5-carboxamides as Novel P2 Ligands. J Med Chem 49:7342–7356CrossRefPubMedGoogle Scholar
  3. Amr AGES, Abdel-Hafez NAS, Mohamed SF, Abdalla MM (2009) Synthesis, reactions, and antiarrhythmic activities of some novel pyrimidines and pyridines fused with thiophene moiety. Turk J Chem 33:421–432Google Scholar
  4. Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323–328CrossRefPubMedGoogle Scholar
  5. Cuendet M, Hostettmann K, Potterat O, Dyatmiko W (1997) Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helv Chim Acta 80:1144–1152CrossRefGoogle Scholar
  6. Dawood KM, Eldebss TMA, El-Zahabi HSA, Yousef MH (2015) Synthesis and antiviral activity of some new bis-1,3-thiazole derivatives. Eur J Med Chem 102:266–276CrossRefPubMedGoogle Scholar
  7. Divya K, Sravya G, Padmaja A, Padmavathi V (2015) Synthesis and antimicrobial activity of bis-heterocyclic sulfamoyl acetamides. Res Chem Intermed 41:4413–4426CrossRefGoogle Scholar
  8. Duh CY, Lo IW, Wang SK, Dai CF (2007) New cytotoxic steroids from the soft coral Clavularia viridis. Steroids 72:573–579CrossRefPubMedGoogle Scholar
  9. Ghosh U, Katzenellenbogen JA (2002) A convenient method for the preparation of highly substituted pyrimidines: Synthesis of tris- and tetra- substituted pyrimidines from 1,3-dicarbonyl compounds and N, N, N-tris-(trimethyl silyl)amidines. J Heterocycl Chem 39:1101–1104CrossRefGoogle Scholar
  10. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem 126:131–138CrossRefPubMedGoogle Scholar
  11. Gupta P, Hameed S, Jain R (2004) Ring-substituted imidazoles as a new class of anti-tuberculosis agents. Eur J Med Chem 39:805–814CrossRefPubMedGoogle Scholar
  12. Guzman A, Romero M, Talamas FX, Villena R, Greenhouse R, Muchowski JM (1996) 1,3- Diaza-1,3-butadienes. Synthesis and conversion into pyrimidines by [4π + 2π] cycloaddition with electron deficient acetylenes. Synthetic utility of 2- (trichloromethyl)pyrimidines. J Org Chem 61:2470–2483CrossRefGoogle Scholar
  13. Hanna MM (2012) New pyrimido[5,4-e]pyrrolo[1,2-c]pyrimidines: Synthesis, 2D-QSAR, anti-inflammatory, analgesic and ulcerogenicity studies. Eur J Med Chem 55:12–22CrossRefPubMedGoogle Scholar
  14. Hanson JR (2006) Steroids: partial synthesis in medicinal chemistry. Nat Prod Rep 23:100–107CrossRefPubMedGoogle Scholar
  15. Kidwai M, Dave B, Bhushan KR (2000) Alumina-supported synthesis of aminoazoles using microwaves. Chem Papers 54:231–234Google Scholar
  16. KikeljD, UrlebU (2002) Product class 17: Thiazoles. (Ed. Volodymyr Kysil) In Science of Synthesis Vol. 11, p 627–833.Google Scholar
  17. Kumar VA, Sarala Y, Kumar MVJ, Reddy MS, Reddy AV, Rao CA (2014) Synthesis and spectral characterization of nickel (II) and copper (II) complexes of 4-chlorobenzaldehydethiosemicarbazone (CBTSC) and evaluation of antioxidant activity. RJPBCS 5:96–102Google Scholar
  18. Little TL, Webber SE (1994) A simple and practical synthesis of 2-aminoimidazoles. J Org Chem 59:7299–7305CrossRefGoogle Scholar
  19. Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L (1994) The nitric oxide- scavenging properties of ginkgo biloba extract EGb 761. Biochem Biophys Res Commun 201:748–755CrossRefPubMedGoogle Scholar
  20. McCarroll AJ, Bradshaw TD, Westwell AD, Matthews CS, Stevens MFG (2007) Quinols as novel therapeutic agents. 7.1 Synthesis of antitumor 4-[1-(Arylsulfonyl-1H-indol-2-yl)]-4-hydroxycyclohexa-2,5-dien-1-ones by sonogashira reactions. J Med Chem 50:1707–1710CrossRefPubMedGoogle Scholar
  21. Ochiai M, Nishi Y, Hashimoto S, Tsuchimoto Y, Chen DW (2003) Synthesis of 2,4- disubstituted thiazoles from (Z)-(2-acetoxyvinyl)phenyl-λ3-iodanes:Nucleophilic substitution of r- λ3-iodanyl ketones with thioureas and thioamides. J Org Chem 68:7887–7888CrossRefPubMedGoogle Scholar
  22. Ozkay Y, Iskdag I, Incesu Z, Akalın G (2010) Synthesis of 2-substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anti cancer activity. Eur J Med Chem 45:3320–3328CrossRefPubMedGoogle Scholar
  23. Pandey J, Vinod TK, Verma SS, Chaturvedi V, Bhatnagar S, Sinha S, Gaikwad AN, Tripathi RP (2009) Synthesis and antitubercular screening of imidazole derivatives. Eur J Med Chem 44:3350–3355CrossRefPubMedGoogle Scholar
  24. Perez LJ, Faulkner DJ (2003) Bistratamides E-J, modified cyclic hexapeptides from the Philippines Ascidian Lissoclinum bistratum. J Nat Prod 66:247–250CrossRefPubMedGoogle Scholar
  25. Philips AJ, Uto Y, Wipf P, Reno MJ, Williams DR (2000) Synthesis of functionalized oxazolines and oxazoles with DAST and Deoxo-Fluor. Org Lett 2:1165–1168CrossRefGoogle Scholar
  26. Premakumari C, Muralikrishna A, Padmaja A, Padmavathi V, Park SJ, Kim T-J, Reddy GD (2014) Synthesis, antimicrobial and anticancer activities of amido sulfonamido methane linked bis heterocycles. Arabian J Chem 7:385–395CrossRefGoogle Scholar
  27. Puratchikodya A, Doble M (2007) Antinociceptive and antiinflammatory activities and QSAR studies on 2-substituted-4,5-diphenyl-1H-imidazoles. Bioorg Med Chem 15:1083–1090CrossRefGoogle Scholar
  28. Reddy PR, Seenaiah D, Padmaja A, Padmavathi V, Krishna NS (2015) Synthesis, antioxidant, and cytotoxic activities of bis(oxazolyl/thiazolyl/imidazolyl)amidomethanesulfonyl Acetamides. Med Chem Res 24:86–98. and references cited thereinCrossRefGoogle Scholar
  29. Reissig HU, Zimmer R (2014) Munchnones-New facets after 50 Years. Angew Chem Int Ed 53:9708–9710CrossRefGoogle Scholar
  30. Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogensis 10:1003–1008CrossRefGoogle Scholar
  31. Rudi A, Chill L, Aknin M, Kashman Y (2003) Didmolamide A and B, two new cyclic hexapeptides from the Marine Ascidian Didemnum molle. J Nat Prod 66:575–577CrossRefPubMedGoogle Scholar
  32. Satoh Y, Yasuda K, Obora Y (2012) Strategy for the synthesis of pyrimidine derivatives: NbCl5-mediated cycloaddition of alkynes and nitriles. Organometallics 31:5235–5238CrossRefGoogle Scholar
  33. Sekhar KC, Syed R, Golla M, Kumar MVJ, Yellapu NK, Rao CA, Raju CN (2014) Novel heteroaryl phosphonicdiamides PTPs inhibitors as anti-hyperglycemic agents. DARU J Pharm Sci 22:76CrossRefGoogle Scholar
  34. Sharma D, Narasimhan B, Kumar P, Judge V, Narang R, Clercq ED, Balzarini J (2009) Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives. Eur J Med Chem 44:2347–2353CrossRefPubMedGoogle Scholar
  35. Shingalapur RV, Hosamani KM, Keri RS (2009) Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles. Eur J Med Chem 44:4244–4248CrossRefPubMedGoogle Scholar
  36. Siddiqui SM, Azam A (2014) Synthesis, characterization of 4,6-disubstituted aminopyrimidines and their sulphonamide derivatives as anti-amoebic agents. Med Chem Res 23:2976–2984CrossRefGoogle Scholar
  37. Siddiqui N, Shamsher MA, Ahsan W (2008) Synthesis, anticonvulsant and toxicity evaluation of 2-(1H-indol-3-yl)acetyl-N-(substituted phenyl)hydrazine carbothioamides and their related heterocyclic derivatives. Acta Pharma 58:445–454CrossRefGoogle Scholar
  38. Singh M, Argade N (2012) Synthetic Studies towards NG-121: Diastereoselective synthesis of NG-121 methyl ether. Synthesis 44:3797–3804CrossRefGoogle Scholar
  39. Tan LT, Sitachitta N, Gerwick WH (2003) The guineamides, novel cyclic depsipeptides from a papua new guinea collection of the marine cyanobacterium Lyngbya majuscule. J Nat Prod 66:764–771CrossRefPubMedGoogle Scholar
  40. Tharanath V, Peddanna K, Kotaiah, Gopal DVRS (2013) Flavonoids isolated from Foeniculum vulgare (Fennel) have virostatic efficiency against Bluetongue Virus. Int J Pharm Sci Rev Res 23:237–242Google Scholar
  41. Tonelli M, Simone M, Tasso B, Novelli F, Boido V (2010) Antiviral activity of benzimidazole derivatives. II. Antiviral activity of 2-phenylbenzimidazole derivatives. Bioorg Med Chem 18:2937–2953CrossRefPubMedGoogle Scholar
  42. Umaa K, Ramanathan M, Krishnakumar K, Kannan K (2009) Elucidation and evaluation of substituted pyrimidines. Asian J Chem 21:6674–6678Google Scholar
  43. Wang Z (2009) Comprehensive organic name reactions and reagentsPlease provide the chapter title and editor names in reference WangZ (2009). Wiley, Hoboken, NJ, p 2293–2297Google Scholar
  44. Wiley MR, Weir LC, Briggs SL, Chirgadze NY, Clawson D (1999) The design of potent, selective, non-covalent, peptide thrombin inhibitors utilizing imidazole as a Sl binding element. Bioorg Med Chem Lett 9:2767–2772CrossRefPubMedGoogle Scholar
  45. Wilkinson BL, Bomaghi LF, Houston TA, Innocenti A, Vullo D, Supuran CT, Poulsen SA (2007) Carbonic anhydrase inhibitors: Inhibition of isozymes I, II, and IX with triazole-linked O-glycosides of benzene sulfonamides. J Med Chem 50:1651–1657CrossRefPubMedGoogle Scholar
  46. Yokokawa F, Sameshima H, Shioiri T (2001) Total synthesis of lyngbyabellin A, a potent cytotoxic metabolite from the marine cyanobacterium Lyngbya majuscule. Tetrahedron Lett 42:4171–4174CrossRefGoogle Scholar
  47. You SL, Kelly JW (2005) The total synthesis of bistratamides F–I. Tetrahedron 61:241–249CrossRefGoogle Scholar
  48. You SL, Kelly JW (2005) Total synthesis of didmolamides A and B. Tetrahedron Lett 46:2567–2570CrossRefGoogle Scholar
  49. Zampieri D, Mamolo MG, Vio L, Banfi E, Scialino G, Fermeglia M, Ferronec M, Priclc S (2007) Synthesis, antifungal and antimycobacterial activities of new bis-imidazole derivatives, and prediction of their binding to P45014DM by molecular docking and MM/PBSA method. Bioorg Med Chem 15:7444–7458CrossRefPubMedGoogle Scholar
  50. Zhong ZJ, Zhang DJ, Peng ZG, Li YH, Shan GZ, Zuo LM, Wu LT, Li SY, Gao RM, Li ZR (2013) Synthesis and antiviral activity of a novel class of (5-oxazolyl)phenylamines. Eur J Med Chem 69:32–43CrossRefPubMedGoogle Scholar
  51. Zhu W, Sun C, Xu S, Wu C, Xu M, Zhao H, Chen L, Zeng W, Zheng P (2014) Design, synthesis, anticancer activity and docking studies of novel 4-morpholino-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine derivatives as mTOR inhibitors. Bioorg Med Chem 22:6746–6754CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Kuppi Reddy Gari Divya
    • 1
  • Donthamsetty V. Sowmya
    • 1
  • Suram Durgamma
    • 1
  • Vadlamudi Tharanath
    • 2
  • Divi Venkataramana Sai Gopal
    • 2
  • Malaka Venkateshwarulu Jyothi Kumar
    • 3
  • Chippada Appa Rao
    • 4
  • Adivireddy Padmaja
    • 1
  • Venkatapuram Padmavathi
    • 1
  1. 1.Department of ChemistrySri Venkateswara UniversityTirupatiIndia
  2. 2.Department of VirologySri Venkateswara UniversityTirupatiIndia
  3. 3.Department of BiotechnologySri Venkateswara UniversityTirupatiIndia
  4. 4.Department of BiochemistrySri Venkateswara UniversityTirupatiIndia

Personalised recommendations