Medicinal Chemistry Research

, Volume 26, Issue 10, pp 2336–2344 | Cite as

Beneficial effects of hydroalcoholic extract and flavonoids from Zuccagnia punctata in a rabbit model of vascular dysfunction induced by high cholesterol diet

  • Julieta Roco
  • Gabriela Alarcón
  • Liliana Sierra
  • Iris Catiana Zampini
  • María Ines Isla
  • Susana Jerez
Original Research


This study evaluated the effects of a Zuccagnia punctata standardized hydroalcoholic extract (ZpE) and three of its major flavonoids [2′,4′-dihydroxychalcone (DHC), 7-hydroxyflavanone (HF) and 3,7-dihydroxyflavone (DHF)] on the vascular reactivity of aortic rings with endothelial dysfunction induced by feeding rabbits on a high cholesterol diet. Rabbits were fed with either normal chow or a diet containing 1% cholesterol for 5–6 weeks. Isometric contractions were measured. Concentration response curves to ZpE (range from 4 × 10−2 to 4 × 10 µg gallic acid equivalent/ml), DHC, DHF or HF (range from 10−9 to 10−4 M) showed concentration-dependent relaxation of arteries pre-contracted with phenylephrine. ZpE (4 × 10−2, 4 × 10−1 and 4 µg gallic acid equivalent/ml), HF (10−9, 10−7, 10−5 M), DHC (10−9 M) and DHF (10−9 M) added to the bath improved acetylcholine affinity. Pre-treatment of arteries with ZpE (4 × 10−2 µg gallic acid equivalent/ml) and DHC (10−9 M) reduced phenylephrine-induced contraction. Incubation with the higher dose of ZpE (4 µg gallic acid equivalent/ml) reduced the angiotensin II-maximal contraction (C max) acting as a non-competitive antagonist, while DHC and DHF (10−5 M) caused a non-parallel rightward of the angiotensin II-concentration response curves and reduced the C max acting as mixed antagonists. ZpE (4 × 10−2 µg gallic acid equivalent/ml), DHC and DHF (10−9 M) caused a rightward displacement of angiotensin II-concentration response curves acting as competitive antagonists. In conclusion, the present study demonstrated that a ZpE and its major flavonoids had beneficial effects in arteries with vascular dysfunction induced by hypercholesterolemia. Therefore its use as herbal medicine to prevent cardiovascular risks factors may be promising.


Zuccagnia punctata Hypercholesterolemia Rabbit aorta Angiotensin II Vascular dysfunction Flavonoids 



This work was supported by grants from the Consejo de Investigaciones de la Universidad Nacional de Tucumán (PIUNT I521/1), Consejo de Investigaciones Científicas y Técnicas de la República Argentina (CONICET PIP 11-232), and Institutional funds from INSIBIO (Instituto Superior de Investigaciones Biológicas). We thank veterinary Rosa Alejandra Molina for bioterio management and Ms Erika Georgieff for her help in data collection.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Agüero MB, González M, Lima B, Svetaz L, Sánchez M, Zacchino S, Egly Feresin G, Schmeda-Hirschmann G, Palermo J, Wunderlin D, Tapia A (2010) Argentinean propolis from Zuccagnia punctata Cav. (Caesalpinieae) exudates: phytochemical characterization and antifungal activity. J Agric Food Chem 58:194–201CrossRefPubMedGoogle Scholar
  2. Ajay M, Achike FI, Mustafa MR (2007) Modulation of vascular reactivity in normal, hypertensive and diabetic rat aortae by a non-antioxidant flavonoid. Pharmacol Res 55:385–391CrossRefPubMedGoogle Scholar
  3. Ajay M, Gilani AH, Mustafa MR (2003) Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta. Life Sci 74:603–612CrossRefPubMedGoogle Scholar
  4. Ajay M, Mustafa MR (2005) Chronic treatment with flavonoids prevents endothelial dysfunction in spontaneously hypertensive rat aorta. J Cardiovasc Pharmacol 46:36–40CrossRefGoogle Scholar
  5. Balasuriya NBW, Vasantha Rupasinghe HP (2011) Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Funct Foods Health Dis 5:172–188Google Scholar
  6. Butassi E, Svetaz LA, Ivancovich JJ, Feresin GE, Tapia A, Zacchino SA (2015) Synergistic mutual potentiation of antifungal activity of Zuccagnia punctata Cav. and Larrea nitida Cav. extracts in clinical isolates of Candida albicans and Candida glabrata. Phytomedicine 22:666–678CrossRefPubMedGoogle Scholar
  7. Chan ECH, Pannangpetch P, Woodman OL (2000) Relaxation of flavones and flavonols in rat isolated thoracic aorta: mechanism of action and structure–activity relationships. J Cardiovasc Pharmacol 5:326–333CrossRefGoogle Scholar
  8. Dong X, Wang Y, Liu T, Wu P, Gao J, Xu J, Yang B, Hu Y (2011) Flavonoids as vasorelaxant agents: synthesis, biological evaluation and quantitative structure activities relationship (QSAR) studies. Molecules 16:8257–8272CrossRefPubMedGoogle Scholar
  9. Duarte J, Pérez Palencia R, Vargas F, Ocete MA, Perez-Vizcaino F, Zarzuelo A, Tamargo J (2001) Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br J Pharmacol 133:117–124CrossRefPubMedPubMedCentralGoogle Scholar
  10. Duarte J, Pérez Vizcaíno F, Utrilla P, Jiménez J, Tamargo J, Zarzuelo A (1993) Vasodilatory effects of flavonoids in rat aortic smooth muscle. Structure–activity relationships. Gen Pharmacol 24:857–862CrossRefPubMedGoogle Scholar
  11. Ghosh D, Scheepens A (2009) Vascular action of polyphenols. Mol Nutr Food Res 53:322–331CrossRefPubMedGoogle Scholar
  12. Gleason MM, Medow MS, Tulenko TN (1991) Excess membrane cholesterol alters calcium movements, cytosolic calcium levels, and membrane fluidity in arterial smooth muscle cells. Circ Res 69:216–227CrossRefPubMedGoogle Scholar
  13. Grassi D, Desideri G, Ferri C (2010) Flavonoids: antioxidants against atherosclerosis. Nutrients 2:889–902CrossRefPubMedPubMedCentralGoogle Scholar
  14. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nutr Biochem 13:572–584CrossRefPubMedGoogle Scholar
  15. Herrera DH, Zarzuelo A, Jimenez J, Marhuenda E, Duarte J (1996) Effects of flavonoids on rat aortic smooth muscle contractility: structure-activity relationships. Gen Pharmacol 27:273–277CrossRefPubMedGoogle Scholar
  16. Huai R, Han X, Wang B, Li C, Niu Y, Li R, Qu Z (2014) Vasorelaxing and antihypertensive effects of 7,8-dihydroxyflavone. Am J Hypertens 27:750–760CrossRefPubMedGoogle Scholar
  17. Jerez S, Sierra L, Coviello A, Peral de Bruno M (2008) Endothelial dysfunction and improvement of the angiotensin II-reactivity in hypercholesterolemic rabbits: role of cyclooxygenase metabolites. Eur J Pharmacol 580:182–189CrossRefPubMedGoogle Scholar
  18. Jerez S, Sierra L, Scacchi F, Peral de Bruno M (2010) Hypercholesterolemia modifies angiotensin II desensitization and cross talk between alpha 1-adrenoceptor and angiotensin AT1 receptor in rabbit aorta. Eur J Pharmacol 635:149–155CrossRefPubMedGoogle Scholar
  19. Jespersen B., Tykocki NR, Watts SW, Cobbett PJ (2015). Measurement of smooth muscle function in the isolated tissue bath-applications to pharmacology research. J Vis Exp. (95), e52324, doi: 10.3791/52324
  20. Morán Vieyra F, Boggetti H, Zampini IC, Ordoñez RM, Isla MI, Alvarez RMS, De Rosso V, Mercadante AZ, Borsarelli CD (2009) Singlet oxygen quenching and radical scavenging capacities of structurally related flavonoids present in Zuccagnia punctata Cav. Free Radic Res 43:553–564CrossRefGoogle Scholar
  21. Moreno A, Nuño G, Cuello S, Sayago JE, Alberto MR, Zampini C, Isla MI (2015a) Anti-inflammatory, antioxidant and antimicrobial activity characterization and toxicity studies of flowers of “jarilla”, a medicinal shrub from Argentina. Nat Prod Commun 6:991–994Google Scholar
  22. Moreno MA, Mercado MI, Nuño G, Zampini IC, Cuello AS, Ponessa GI, Sayago JE, Isla MI (2015b) Histochemical localization and characterization of chalcones in foliar surface of Zuccagnia punctata Cav. Insight into their physiological role. Phytochem Lett 13:134–140CrossRefGoogle Scholar
  23. Pederiva R, Giordano OS (1984) 3,7-Dihydroxy-8-methoxyflavone from Zuccagnia punctata. Phytochemistry 23:1340–1341CrossRefGoogle Scholar
  24. Serafini M, Peluso I, Raguzzini A (2010) Flavonoids as anti-inflammatory agents. Proc Nutr Soc 69:273–278CrossRefPubMedGoogle Scholar
  25. Svetaz L, Tapia A, López SN, Furlán RLE, Petenatti E, Pioli R, Schmeda-Hirschmann G, Zacchino SA (2004) Antifungal chalcones and new caffeic acid esters from Zuccagnia punctata acting against soybean infecting fungi. J Agric Food Chem 52:3297–3300CrossRefPubMedGoogle Scholar
  26. Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals: a review. Trop J Pharm Res 7:1089–1099CrossRefGoogle Scholar
  27. Ulibarri EA (2005) Zuccagnia punctata (Leguminosae) ¿Nuevo o viejo endemismo argentino? Darwiniana 43:212–215Google Scholar
  28. Vessal M, Hemmati M, Vasei M (2003) Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C 135C:357–364Google Scholar
  29. Yang BC, Phillips MI, Mohuczy D, Meng H, Shen L, Mehta P, Mehta JL (1998) Increased angiotensin II type 1 receptor expression in hypercholesterolemic atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 18:1433–1439CrossRefPubMedGoogle Scholar
  30. Zampini IC, Villena J, Salva S, Herrera M, Isla MI, Alvarez S (2012) Potentiality of standardized extract and isolated flavonoids from Zuccagnia punctata for the treatment of respiratory infections by Streptococcus pneumoniae: in vitro and in vivo studies. J Ethnopharmacol 140:287–292CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Instituto Superior de Investigaciones Biológicas (UNT-CONICET)TucumánArgentina
  2. 2.Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT)TucumánArgentina
  3. 3.Instituto de Bioprospección y Fisiología Vegetal (CONICET-UNT)TucumánArgentina

Personalised recommendations