Advertisement

Medicinal Chemistry Research

, Volume 26, Issue 10, pp 2235–2242 | Cite as

Synthesis and antimicrobial/antimalarial activities of novel naphthalimido trans-β-lactam derivatives

  • Javad Ameri Rad
  • Aliasghar Jarrahpour
  • Christine Latour
  • Veronique Sinou
  • Jean Michel Brunel
  • Hsaine Zgou
  • Yahia Mabkhot
  • Taibi Ben Hadda
  • Edward Turos
Original Research
  • 231 Downloads

Abstract

This paper describes for the first time the synthesis and microbiological assessment of some new β-lactam derivatives containing a 1,8-naphthalimide functional group. These compounds were obtained through a [2 + 2] cyclocondensation (Staudinger reaction) of a ketene derived from 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) acetic acid (Alrestatin) and various N-arylimines. The reaction was totally diastereoselective leading exclusively to the formation of trans-β-lactam adducts 3a–l, which were characterized by FT-Infra Red, 1H NMR, 13C NMR, mass spectrometry, elemental analyses, and X-ray crystallography, and then individually evaluated for antibacterial and antimalarial activities. Two of the β-lactams, 3c and 3l, afforded IC50 values of 3 and 5 µM, respectively, against Plasmodium falciparum K1 resistant strain.

Keywords

β-Lactam 1,8-Naphthalimide Staudinger reaction Alrestatin Antimalarial 

Notes

Acknowledgements

The authors would like to thank the Shiraz University Research Council for financial support (Grant No. 95-GR-SC-23). T.B.H. and Y.N.M. extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this Prolific Research Group (PRG-1437-29).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

44_2017_1920_MOESM1_ESM.docx (2.6 mb)
Supplementary Information

References

  1. Alcaide B, Almendros P, Aragoncillo C (2007) β-Lactams: versatile building blocks for the stereoselective synthesis of non-β-lactam products. Chem Rev 107:4437–4492CrossRefPubMedGoogle Scholar
  2. Alcaide B, Aragoncillo C, Almendros P (2008) Comprehensive heterocyclic chemistry III. Taylor ARKARFVSJK (ed.), 111–171Google Scholar
  3. Alcala MA, Kwan SY, Shade CM, Lang M, Uh H, Wang M, Lee YJ (2011) Luminescence targeting and imaging using a nanoscale generation 3 dendrimer in an in vivo colorectal metastatic rat model. Nanomed Nanotechnol Biol Med 7:249–258CrossRefGoogle Scholar
  4. Armarego W, Chai C (2003) Purification of laboratory chemicals, 5th edn. Butter Worth, OxfordGoogle Scholar
  5. Bandyopadhyay D, Cruz J, Banik BK (2012) Novel synthesis of 3-pyrrole substituted β-lactams via microwave-induced bismuth nitrate-catalyzed reaction. Tetrahedron 68:10686–10695CrossRefGoogle Scholar
  6. Banik BK, Banik I, Becker FF (2010) Asymmetric synthesis of anticancer β-lactams via Staudinger reaction: Utilization of chiral ketene from carbohydrate. Eur J Med Chem 45:846–848CrossRefPubMedGoogle Scholar
  7. Bojinov VB, Georgiev NI, Nikolov PS (2008) Synthesis and photophysical properties of fluorescence sensing ester-and amidoamine-functionalized 1,8-naphthalimides. J Photochem Photobiol A 193:129–138CrossRefGoogle Scholar
  8. Bouche C-M, Berdague P, Facoetti H, Robin P, Le Barny P, Schott M (1996) Side-chain electroluminescent polymers. Synth Met 81:191–195CrossRefGoogle Scholar
  9. Brana M, Ramos A (2001) Naphthalimides as anticancer agents: synthesis and biological activity. Curr Med Chem-Anti-Cancer Agent 1:237–255CrossRefGoogle Scholar
  10. Brider T, Gellerman G (2012) A two-step synthesis of medicinally-important 1, 8-naphthalimide peptidyls by solid phase organic synthesis. Tetrahedron Lett 53:5611–5615CrossRefGoogle Scholar
  11. Cao XF, Wang YS, Li SW, Chena CS, Ke SY (2011) Synthesis and biological activity of a series of novel N‐Substituted β‐Lactams derived from natural gallic acid. J Chin Chem Soc 58:35–40CrossRefGoogle Scholar
  12. Celik I, Akkurt M, Jarrahpour A, Ameri Rad J, Celik O (2015a) Crystal structure of 2-[4-(4-chlorophenyl)-1-(4-methoxyphenyl)-2-oxoazetidin-3-yl]benzo[de]isoquinoline-1,3-dione dimethyl sulfoxide monosolvate. Acta Crystallogr Sect E 71:o129–o130CrossRefGoogle Scholar
  13. Celik I, Akkurt M, Jarrahpour A, Ameri Rad J, Celik O (2015b) Crystal structure of 2-[(3S,4S)-4-(anthracen-9-yl)-1-(4-methoxyphenyl)-2-oxoazetidin-3-yl]-2-aza-2H-phenalene-1,3-dione unknown solvate. Acta Crystallogr Sect E 71:o184–o185CrossRefGoogle Scholar
  14. Chen D, Falsetti SC, Frezza M, Milacic V, Kazi A, Cui QC, Long TE, Turos E, Dou QP (2008) Anti-tumor activity of N-thiolated β-lactam antibiotics. Cancer Lett 268:63–69CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chu DT, Plattner JJ, Katz L (1996) New directions in antibacterial research. J Med Chem 39:3853–3874CrossRefPubMedGoogle Scholar
  16. Coates C, Kabir J, Turos E (2005) β-Lactams. Compounds with Four and Three Carbon-Heteroatom Bonds. Houben-Weyl Met Mol Trans 21.9:609–646Google Scholar
  17. Donkor IO, Abdel-Ghany YS, Kador PF, Mizoguchi T, Bartoszko-Malik A, Miller DD (1998) Synthesis and biological activities of aldose reductase inhibitors bearing acyl benzenesulfonamides as carboxylic acid surrogates. Eur J Med Chem 33:15–22CrossRefGoogle Scholar
  18. Duguet N, Donaldson A, Leckie SM, Kallström EA, Campbell CD, Shapland P, Smith AD (2010) Chiral relay in NHC-mediated asymmetric β-lactam synthesis II; asymmetry from NHCs derived from acyclic 1,2-diamines. Tetrahedron: Asymmetry 21:601–616CrossRefGoogle Scholar
  19. Ebrahimi E, Jarrahpour A, Heidari N, Sinou V, Latour C, Brunel JM, Turos E (2016) Synthesis and antimalarial activity of new nanocopolymer β-lactams and molecular docking study of their monomers. Med Chem Res 25:247–262CrossRefGoogle Scholar
  20. El-Betany AM, McKeown NB (2012) The synthesis and fluorescence properties of macromolecular components based on 1, 8-naphthalimide derivatives and dimers. Tetrahedron Lett 53:808–810CrossRefGoogle Scholar
  21. Ferreira R, Remón P, Pischel U (2009) Multivalued logic with a tristable fluorescent switch. J Phys Chem C 113:5805–5811CrossRefGoogle Scholar
  22. Frezza M, Garay J, Chen D, Cui C, Turos E, Dou QP (2008) Induction of tumor cell apoptosis by a novel class of N-thiolated β-lactam antibiotics with structural modifications at N1 and C3 of the lactam ring. Int J Mol Med 21:689–695PubMedPubMedCentralGoogle Scholar
  23. Georgiev NI, Bojinov VB, Nikolov PS (2011) The design, synthesis and photophysical properties of two novel 1,8-naphthalimide fluorescent pH sensors based on PET and ICT. Dyes Pigm 88:350–357CrossRefGoogle Scholar
  24. Goel RK, Mahajan MP, Kulkarni SK (2004) Evaluation of anti-hyperglycemic activity of some novel monocyclic β-lactams. J Pharm Pharm Sci 7:80–83PubMedGoogle Scholar
  25. Jarrahpour A, Ebrahimi E, Khalifeh R, Sharghi H, Sahraei M, Sinou V, Brunel JM (2012) Synthesis of novel β-lactams bearing an anthraquinone moiety, and evaluation of their antimalarial activities. Tetrahedron 68:4740–4744CrossRefGoogle Scholar
  26. Jarrahpour A, Ebrahimi E, Sinou V, Latour C, Brunel JM (2014) Diastereoselective synthesis of potent antimalarial cis-β-lactam agents through a [2 + 2] cycloaddition of chiral imines with a chiral ketene. Eur J Med Chem 87:364–371CrossRefPubMedGoogle Scholar
  27. Jarrahpour A, Shirvani P, Sinou V, Latour C, Brunel JM (2016) Synthesis and biological evaluation of some new β-lactam-triazole hybrids. Med Chem Res 25:149–162CrossRefGoogle Scholar
  28. Jung SO, Yuan W, Ju JU, Zhang S, Kim YH, Je JT, Kwon SK (2009) A new orange-light-emitting materials based on (N-naphthyl)-1, 8-naphthalimide for OLED applications. Mol Cryst Liq Cryst 514:45/[375]–54/[384]Google Scholar
  29. Kaddouri H, Nakache S, Houzé S, Mentré F, Le Bras J (2006) Assessment of the drug susceptibility of Plasmodium falciparum clinical isolates from africa by using a Plasmodium lactate dehydrogenase immunodetection assay and an inhibitory maximum effect model for precise measurement of the 50-percent inhibitory concentration. Antimicrob Agents Chemother 50:3343–3349CrossRefPubMedPubMedCentralGoogle Scholar
  30. Konaklieva M (2002) β-Lactams as inhibitors of serine enzymes. Curr Med Chem Anti-Infective Agents 1:215–238CrossRefGoogle Scholar
  31. Le Nagard H, Vincent C, Mentré F, Le Bras J (2011) Online analysis of in vitro resistance to antimalarial drugs through nonlinear regression. Comput Meth Prog Bio 104:10–18CrossRefGoogle Scholar
  32. MacIntyre MM, Martell JM, Eriksson LA (2010) DFT study of five naphthalimide derivatives: Structures and redox properties. J Mol Struct: Theochem 941:133–137CrossRefGoogle Scholar
  33. Malviya VK, Liu P, Alberts DS, Surwit EA, Craig JB, Hannigan EV (1992) Evaluation of amonafide in cervical cancer, Phase II: a SWOG study. Am J Clin Oncol 15:41–44CrossRefPubMedGoogle Scholar
  34. Mehta PD, Sengar N, Pathak A (2010) 2-Azetidinone - a new profile of various pharmacological activities. Eur J Med Chem 45:5541–5560CrossRefPubMedGoogle Scholar
  35. Morin RB, Gorman M (eds) (1982) Chemistry and Biology of β-Lactam Antibiotics. Vol 1–3, Academic Press: New York, NY, USAGoogle Scholar
  36. Nagarajan S, Arjun P, Raaman N, Shah A, Sobhia ME, Das TM (2012) Stereoselective synthesis of sugar-based β-lactam derivatives: docking studies and its biological evaluation. Tetrahedron 68:3037–3045CrossRefGoogle Scholar
  37. Noedl H, Bronnert J, Yingyuen K, Attlmayr B, Kollaritsch H, Fukuda M (2005) Simple histidine-rich protein 2 double-site sandwich enzyme-linked immunosorbent assay for use in malaria drug sensitivity testing. Antimicrob Agents Chemother 49:3575–3577CrossRefPubMedPubMedCentralGoogle Scholar
  38. O’Boyle NM, Knox AJ, Price TT, Williams DC, Zisterer DM, Lloyd DG, Meegan MJ (2011) Lead identification of β-lactam and related imine inhibitors of the molecular chaperone heat shock protein 90. Bioorg Med Chem 19:6055–6068CrossRefPubMedGoogle Scholar
  39. O’Driscoll M, Greenhalgh K, Young A, Turos E, Dickey S, Lim DV (2008) Studies on the antifungal properties of N-thiolated β-lactams. Bioorg Med Chem 16:7832–7837CrossRefPubMedPubMedCentralGoogle Scholar
  40. Robinson K, Castaner J (1996) Bisnafide mesylate: antineoplastic. Drugs Future 21:239–244CrossRefGoogle Scholar
  41. Rogers JE, Kelly LA (1999) Nucleic acid oxidation mediated by naphthalene and benzophenone imide and diimide derivatives: consequences for DNA redox chemistry. J Am Chem Soc 121:3854–3861CrossRefGoogle Scholar
  42. Rosenblum SB, Huynh T, Afonso A, Davis HR, Yumibe N, Clader JW, Burnett DA (1998) Discovery of 1-(4-fluorophenyl)-(3 R)-[3-(4-fluorophenyl)-(3 S)-hydroxypropyl]-(4 S)-(4-hydroxyphenyl)-2-azetidinone (SCH 58235): a designed, potent, orally active inhibitor of cholesterol absorption. J Med Chem 41:973–980CrossRefPubMedGoogle Scholar
  43. Saturnino C, Fusco B, Saturnino P, Martino GD, Rocco F, Lancelot J-C (2000) Evaluation of analgesic and anti-inflammatory activity of novel. β-lactam monocyclic compounds. Biol Pharm Bull 23:654–656CrossRefPubMedGoogle Scholar
  44. Sawa M, Hsu T-L, Itoh T, Sugiyama M, Hanson SR, Vogt PK, Wong C-H (2006) Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo. Proc Nat Acad Sci USA 103:12371–12376CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sharma R, Samadhiya P, Srivastava SD, Srivastava SK (2011) Synthesis and biological activity of new series of N-[3-(1H-1, 2, 3-benzotriazol-1-yl) propyl]-2-(substituted phenyl)-3-chloro-4-oxo-1-azetidinecarboxamide. Acta Chim Slov 58:110–119PubMedGoogle Scholar
  46. Singh G (2003) Recent progress in the synthesis and chemistry of azetidinones. Tetrahedron 59:7631–7649CrossRefGoogle Scholar
  47. Soengas RG, Segade Y, Jiménez C, Rodríguez J (2011) Highly diastereoselective indium-mediated synthesis of β-lactam carbohydrates from imines. Tetrahedron 67:2617–2622CrossRefGoogle Scholar
  48. Southgate R (1994) The synthesis of natural β-lactam antibiotics. Contemp Org Synth 1:417–431CrossRefGoogle Scholar
  49. Sperka T, Pitlik J, Bagossi P, Tözsér J (2005) β-Lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease. Bioorg Med Chem Lett 15:3086–3090CrossRefPubMedGoogle Scholar
  50. Stolarski R (2009) Fluorescent naphthalimide dyes for polyester fibres. Fibres Text East Eur 17:91–95Google Scholar
  51. Sutton JC, Bolton SA, Davis ME, Hartl KS, Jacobson B, Mathur A, Seiler SM (2004) Solid-phase synthesis and SAR of 4-carboxy-2-azetidinone mechanism-based tryptase inhibitors. Bioorg Med Chem Lett 14:2233–2239CrossRefPubMedGoogle Scholar
  52. Wild H, Georg G (1993) The organic chemistry of β-lactams. VCH, New York, NYGoogle Scholar
  53. Wu A, Xu Y, Qian X (2009) Novel naphthalimide–amino acid conjugates with flexible leucine moiety as side chain: design, synthesis and potential antitumor activity. Bioorg Med Chem 17:592–599CrossRefPubMedGoogle Scholar
  54. Xu Z, Baek K-H, Kim HN, Cui J, Qian X, Spring DR, Yoon J (2009) Zn2+-triggered amide tautomerization produces a highly Zn2+-selective, cell-permeable, and ratiometric fluorescent sensor. J Am Chem Soc 132:601–610CrossRefGoogle Scholar
  55. Zarei M (2013) A facile and effective synthesis of 2-azetidinones via phosphonitrilic chloride. Tetrahedron 69:6620–6626CrossRefGoogle Scholar
  56. Zhang Y-Y, Zhou C-H (2011) Synthesis and activities of naphthalimide azoles as a new type of antibacterial and antifungal agents. Bioorg Med Chem Lett 21:4349–4352CrossRefPubMedGoogle Scholar
  57. Zhang Y, Feng S, Wu Q, Wang K, Yi X, Wang H, Pan Y (2011) Microwave-assisted synthesis and evaluation of naphthalimides derivatives as free radical scavengers. Med Chem Res 20:752–759CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Javad Ameri Rad
    • 1
  • Aliasghar Jarrahpour
    • 1
  • Christine Latour
    • 2
  • Veronique Sinou
    • 2
  • Jean Michel Brunel
    • 3
  • Hsaine Zgou
    • 4
  • Yahia Mabkhot
    • 5
  • Taibi Ben Hadda
    • 6
  • Edward Turos
    • 7
  1. 1.Department of Chemistry, College of SciencesShiraz UniversityShirazIran
  2. 2.Aix-Marseille Université, UMR-MD3 Relation hôte-parasites, Physiopathologie & Pharmacologie, Faculté de pharmacie, Bd Jean MoulinMarseilleFrance
  3. 3.Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, UMR7258, Institut Paoli CalmettesAix-Marseille Université, UM 105, Inserm, U1068, Faculté de Pharmacie, Bd Jean MoulinMarseilleFrance
  4. 4.Ibn Zohr University, Polydisciplinary FacultyOuarzazateMorocco
  5. 5.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  6. 6.LCM Laboratory, FSOUniversity of Mohammed Premier, Faculty of SciencesOujdaMorocco
  7. 7.Center for Molecular Diversity in Drug Design, Discovery, and Delivery, Department of ChemistryUniversity of South FloridaTampaUSA

Personalised recommendations