Medicinal Chemistry Research

, Volume 26, Issue 10, pp 2221–2224 | Cite as

Differential of live and dead cells by magnetic resonance imaging

Review Article
  • 91 Downloads

Abstract

Methods to distinguish live and dead cells in vivo are of great interest to medicinal chemistry research. This review summarizes articles describing the use of magnetic resonance imaging for discriminating between live and dead cells. Studies from the perspective of clinical applications were selected for the review.

Keywords

Live and dead cells Magnetic resonance imaging Medicinal chemistry research Cancer Tumor analysis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987CrossRefPubMedGoogle Scholar
  2. Ahrens ET, Young WB, Xu H, Pusateri LK (2011) Rapid quantificationof inflammation in tissue samples using perfluorocarbon emulsion and fluorine-19 nuclear magnetic resonance. BioTech 50:229–234Google Scholar
  3. Bartusik D, Tomanek B (2012) Detection of Trastuzumab efficacy using 1H MRI ex vivo of breast cancer cells. Med Chem Res 21(9):2316–2319CrossRefGoogle Scholar
  4. Bartusik D, Tomanek B, Siluk D, Kaliszan R, Fallone G (2009) The application of 19F magnetic resonance ex vivo imaging of three-dimensional cultured breast cancer cells to study the effect of d-tocopherol. Anal Biochem 387:315–317CrossRefPubMedGoogle Scholar
  5. Boehm-Sturm P, Mengler L, Wecker S, Hoehn M, Kallur T (2011) In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS One 6:e29040CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bonetto F, Srinivas M, Heerschap A (2011) A novel 19F agent for detection and quantification of human dendritic cells using magnetic resonance imaging. Int J Cancer 129:365–373CrossRefPubMedGoogle Scholar
  7. Bulte JW (2009) In vivo MRI cell tracking: clinical studies. Am J Roentgenol 193:314–325CrossRefGoogle Scholar
  8. Chen WH, Luo GF, Lei Q, Cao FY, Fan JX, Qiu WX, Jia HZ, Hong S, Fang F, Zeng X, Zhuo RX, Zhang XZ (2016) Rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy. Biomaterials 76:87–101CrossRefPubMedGoogle Scholar
  9. Dardzinski BJ, Sotak C (1997) Rapid tissue oxygen tension mapping using 19F inversion recovery echo planar imaging of perfluoro-15-crown-5-ether. Magn Reson Med 32:88–97CrossRefGoogle Scholar
  10. de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Adema GJ, Bulte JW, Scheenen TW, Punt CJ, Heerschap A, Figdor CG (2005a) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413CrossRefPubMedGoogle Scholar
  11. De Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJ, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JW, Scheenen TW, Punt CJ, Heerschap A, Figdor CG (2005b) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413CrossRefPubMedGoogle Scholar
  12. Flogel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J (2008) In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118:140–148CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gray JW, Pinkel D, Brown JM (1994) Fluorescence in situ hybridization in cancer and radiation biology. Radiat Res 137(3):275–289CrossRefPubMedGoogle Scholar
  14. Kadayakkara DK, Ranganathan S, Young WB, Ahrens ET (2012) Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. Lab Investig J Tech Methods Pathol 92:636–645CrossRefGoogle Scholar
  15. Kasten A, Grüttner C, Kühn J-P, Bader R, Pasold J, Frerich B (2014) Comparative in vitro study on magnetic iron oxide nanoparticles for MRI tracking of adipose tissue-derived progenitor cells. PLoS One 9(9):e108055CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ngen EJ, Wang L, Kato Y, Krishnamachary B, Zhu W, Gandhi N, Smith B, Armour M, Wong J, Gabrielson K, Artemov D (2015) Imaging transplanted stem cells in real time using an MRI dual-contrast method. Sci Rep 5:13628CrossRefPubMedPubMedCentralGoogle Scholar
  17. Nicholls FJ, Rotz MW, Ghuman H, MacRenaris KW, Meade TJ, Modo M (2015) DNA-gadolinium-gold nanoparticles for in vivo T1 MR imaging of transplanted human neural stem cells. Biomaterials 77:291–306CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ruiz-Cabello J, Walczak P, Kedziorek DA, Chacko VP, Schmieder AH, Wickline SA, Lanza GM, Bulte JW (2008) In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magn Reson Med 60:1506–1511CrossRefPubMedPubMedCentralGoogle Scholar
  19. Srinivas M, Boehm-Sturm P, Figdor CG, de Vries IJ, Hoehn M (2012) Labeling cells for in vivo tracking using 19F MRI. Biomaterials 33:8830–8840CrossRefPubMedGoogle Scholar
  20. Srinivas M, Turner MS, Janjic JM, Morel PA, Laidlaw DH, Ahrens ET (2009) In vivo cytometry of antigen-specific t cells using 19F MRI. Magn Reson Med 62:747–753CrossRefPubMedPubMedCentralGoogle Scholar
  21. Stoll G, Basse-Lusebrink T, Weise G, Jakob P (2012) Visualization of inflammation using 19F-magnetic resonance imaging and perfluorocarbons. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(4):438–447CrossRefPubMedGoogle Scholar
  22. Stroh A, Faber C, Neuberger T, Lorenz P, Sieland K, Jakob PM, Webb A, Pilgrimm H, Schober R, Pohl EE, Zimmer C (2005) In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging. Neuroimage 24(3):635–645CrossRefPubMedGoogle Scholar
  23. Temme S, Bonner F, Schrader J, Flogel U (2012) 19F magnetic resonance imaging of endogenous macrophages in inflammation. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:329–343CrossRefPubMedGoogle Scholar
  24. Tirotta I, Mastropietro A, Cordiglieri C, Cordiglieri C, Gazzera L, Baggi F, Baselli G, Bruzzone MG, Zucca I, Cavallo G, Terraneo G, Baldelli Bombelli F, Metrangolo P, Resnati G (2014) A superfluorinated molecular probe for highly sensitive in vivo 19F MRI. J Am Chem Soc 136:8524–8527CrossRefPubMedGoogle Scholar
  25. Weise G, Basse-Luesebrink TC, Wessig C, Jakob PM, Stoll G (2011) In vivo imaging of inflammation in the peripheral nervous system by 19F MRI. Exp Neurol 229:494–501CrossRefPubMedGoogle Scholar
  26. Weissleder R, Nahrendorf M (2015) Advancing biomedical imaging. Proc Natl Acad Sci USA 112(47):14424–14428CrossRefPubMedPubMedCentralGoogle Scholar
  27. Yu JX, Kodibagkar VD, Cui W, Mason RP (2005) 19F a versatile reporter for noninvasive physiology and pharmacology using magnetic resonance. Curr Med Chem 12:819–848CrossRefPubMedGoogle Scholar
  28. Zarif L, Postel M, Trevino L, Riess JG, Valla A, Follana R (1994) Biodistribution and excretion of a mixed fluorocarbon-hydrocarbon “dowel” emulsion as determined by 19F NMR. Artif Cells Blood Substit Immobil Biotechnol 22:1193–1198CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Natural Sciences DepartmentShorter UniversityRomeUSA
  2. 2.Biology and Chemistry DepartmentSouthern Polytechnic State University, MariettaUSA

Personalised recommendations