Skip to main content

Advertisement

Log in

Synthesis and antimicrobial evaluation of sulfanilamide- and carbohydrate-derived 1,4-disubstitued-1,2,3-triazoles via click chemistry

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

4-Sulfanilamido substitued-1,2,3-triazoles conjugated with monosaccharides (817) including d-glucose, d-galactose, d-mannose, and d-fructose were synthesized in good yields from azidosugars with propargyl sulfanilamides using copper catalyst 1,3-dipolar cycloaddition reaction (CuAAC). The structures of new compounds were elucidated by liquid chromatography-mass spectrometry, infrared, one-dimensional- and two-dimensional-nuclear magnetic resonance techniques. All of the new compounds were tested in vitro against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans for their antibacterial and antifungal activities. Experimental results showed antimicrobial activity with minimum inhibitory concentrations values a ranging from 0.078 to 5.0 mg/mL against test microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Aher NG, Pore VS, Mishra NN, Kumar A, Shukla PK, Sharma A, Bhat MK (2009) Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg Med Chem Lett 19(3):759–763

    Article  CAS  PubMed  Google Scholar 

  • Altimari JM, Niranjan B, Risbridger GP, Schweiker SS, Lohning AE, Henderson LC (2014) Synthesis and preliminary investigations into novel 1,2,3-triazole-derived androgen receptor antagonists inspired by bicalutamide. Bioorg Med Chem Lett 24(21):4948–4953

    Article  CAS  PubMed  Google Scholar 

  • Berthold HJ, Franke S, Thiem J, Schotten T (2010) Ex post glycoconjugation of phthalocyanines. J Org Chem 75(11):3859–3862

    Article  CAS  PubMed  Google Scholar 

  • Carvalho I, Andrade P, Campo VL, Guedes PM, Sesti-Costa R, Silva JS, Schenkman S, Dedola S, Hill L, Rejzek M (2010) ‘Click chemistry’ synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg Med Chem 18(7):2412–2427

    Article  CAS  PubMed  Google Scholar 

  • Da Silva FDC, De Souza MCB, Frugulhetti II, Castro HC, Silmara LDO, De Souza TML, Rodrigues DQ, Souza AM, Abreu PA, Passamani F (2009) Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur J Med Chem 44(1):373–383

    Article  Google Scholar 

  • Da Silva FDC, Do Carmo Cardoso MF, Ferreira PG, Ferreira VF (2015) Biological properties of 1H-1,2,3- and 2H-1,2,3-triazoles. In: Dehaen W, Bakulev VA (Eds.) Chemistry of 1,2,3-triazoles. Springer, New York, pp 117–165. Vol. 40

    Google Scholar 

  • Ernst B, Magnani JL (2009) From carbohydrate leads to glycomimetic drugs. Nat Rev Drug Discov 8:661–677

    Article  CAS  PubMed  Google Scholar 

  • Ferreira SB, Sodero AC, Cardoso MF, Lima ES, Kaiser CR, Silva Jr FP, Ferreira VF (2010) Synthesis, biological activity, and molecular modeling studies of 1H-1,2,3-triazole derivatives of carbohydrates as α-glucosidases inhibitors. J Med Chem 53(6):2364–2375

    Article  CAS  PubMed  Google Scholar 

  • Giffin MJ, Heaslet H, Brik A, Lin Y-C, Cauvi G, Wong C-H, Mcree DE, Elder JH, Stout CD, Torbett BE (2008) A copper (I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J Med Chem 51(20):6263–6270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heravi MM, Hamidi H, Zadsirjan V (2014) Recent applications of click reaction in the syntheses of 1,2,3-triazoles. Curr Org Synth 11(5):647–675

    Article  CAS  Google Scholar 

  • Hou J, Liu X, Shen J, Zhao G, Wang PG (2012) The impact of click chemistry in medicinal chemistry. Expert Opin Drug Discov 7(6):489–501

    Article  CAS  PubMed  Google Scholar 

  • Huisgen R (1984) 1,3-Dipolar cycloaddition. Introduction, survey, mechanism. In: Padwa A (Ed.) 1,3-Dipolar cycloaddition chemistry. Wiley, New York, pp 1–176. Vol. 2

    Google Scholar 

  • Kharb R, Yar MS, Sharma PC (2011) Recent advances and future perspectives of triazole analogs as promising antiviral agents. Mini Rev Med Chem 11(1):84–96

    Article  CAS  PubMed  Google Scholar 

  • Kharb R, Sharma PC, Yar MS (2011) Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem 26(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Konda S, Rao P, Oruganti S (2014) Click chemistry route to tricyclic monosaccharide triazole hybrids: design and synthesis of substituted hexahydro-4H-pyrano[2,3-f][1,2,3]triazolo[5,1-c][1,4] oxazepines. RSC Adv 4(109):63962–63965

    Article  CAS  Google Scholar 

  • Lauria A, Delisi R, Mingoia F, Terenzi A, Martorana A, Barone G, Almerico AM (2014) 1,2,3‐Triazole in heterocyclic compounds, endowed with biological activity, through 1,3‐dipolar cycloadditions. Eur J Org Chem 2014(16):3289–3306

    Article  CAS  Google Scholar 

  • Li L-T, Zhou L-F, Li Y-J, Huang J, Liu R-H, Wang B, Wang P (2012) Facile synthesis of 1,2,3-triazole analogs of SGLT2 inhibitors by ‘click chemistry’. Bioorg Med Chem Lett 22(1):642–644

    Article  CAS  PubMed  Google Scholar 

  • Lopez M, Salmon AJ, Supuran CT, Poulsen SA (2010) Carbonic anhydrase inhibitors developed through ‘click tailing’. Curr Pharm Des 16(29):3277–3287

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Wang Y, Zhao B-X, Ye W-C, Jiang S (2015) The application of click chemistry in the synthesis of agents with anticancer activity. Drug Des Dev Ther 9:1585–1599

    Google Scholar 

  • Maria De Lourdes GF, Pinheiro LC, Santos-Filho OA, Peçanha MD, Sacramento CQ, Machado V, Ferreira VF, Souza TML, Boechat N (2014) Design, synthesis, and antiviral activity of new 1H-1,2,3-triazole nucleoside ribavirin analogs. Med Chem Res 23(3):1501–1511

    Article  Google Scholar 

  • Miner PL, Wagner TR, Norris P (2005) Cu (I)-catalyzed formation of d-mannofuranosyl 1,4-disubstituted 1,2,3-triazolecarbohybrids. Heterocycles 65(5):1035–1049

    Article  CAS  Google Scholar 

  • Mishra AK, Kumar A (2015) Recent advances in development of sulfonamide derivatives and their pharmacological effects—a review. Am J Pharmacol Sci 3(1):18–24

    Google Scholar 

  • Padwa A (2008) Aziridines and azirines: Monocyclic. In: Katritzky AR, Ramsden CA, Scriven EFV, Taylor RJK (eds) Comprehensive heterocyclic chemistry III. Elsevier, Oxford, p 1–104. vol. 1

    Chapter  Google Scholar 

  • Petrova KT, Potewar TM, Correia-Da-Silva P, Barros MT, Calhelha RC, Ćiric A, Soković M, Ferreira IC (2015) Antimicrobial and cytotoxic activities of 1,2,3-triazole-sucrose derivatives. Carbohydr Res 417:66–71

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska DG, Balzarini J, Głowacka IE (2012) Design, synthesis, antiviral and cytostatic evaluation of novel isoxazolidine nucleotide analogues with a 1,2,3-triazole linker. Eur J Med Chem 47:501–509

    Article  CAS  PubMed  Google Scholar 

  • Poláková M, Stanton R, Wilson IB, Holková I, Šesták S, Machová E, Jandová Z, Kóňa J (2015) ‘Click chemistry’synthesis of 1-(α-d-mannopyranosyl)-1,2,3-triazoles for inhibition of α-mannosidases. Carbohydr Res 406:34–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Pore VS, Jagtap MA, Agalave SG, Pandey AK, Siddiqi MI, Kumar V, Shukla PK (2012) Synthesis and antifungal activity of 1,5-disubstituted-1,2,3-triazole containing fluconazole analogues. Med Chem Comm 3(4):484–488

    Article  CAS  Google Scholar 

  • Raj R, Sharma V, Hopper MJ, Patel N, Hall D, Wrischnik LA, Land KM, Kumar V (2014) Synthesis and preliminary in vitro activity of mono- and bis- 1H-1,2,3-triazole-tethered β-lactam-isatin conjugates against the human protozoal pathogen Trichomonas vaginalis. Med Chem Res 23(8):3671–3680

    Article  CAS  Google Scholar 

  • Reitz AB, Tuman RW, Marchione CS, Jordan Jr AD, Bowden CR, Maryanoff BE (1989) Carbohydrate biguanides as potential hypoglycemic agents. J Med Chem 32(9):2110–2116

    Article  CAS  PubMed  Google Scholar 

  • Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem 114(14):2708–2711

    Article  Google Scholar 

  • Sanghvi YS, Bhattacharya BK, Kini GD, Matsumoto SS, Larson SB, Jolley WB, Robins RK, Revankar GR (1990) Growth inhibition and induction of cellular differentiation of human myeloid leukemia cells in culture by carbamoyl congeners of ribavirin. J Med Chem 33(1):336–344

    Article  CAS  PubMed  Google Scholar 

  • Silva GBD, Guimarães BM, Assis SP, Lima VL, Oliveira RND (2013) Ultrasound-assisted synthesis of 1-N-β-d-glucopyranosyl-1H-1,2,3-triazole benzoheterocycles and their anti-inflammatory activities. J Braz Chem Soc 24(6):914–921

    Google Scholar 

  • Singh BK, Yadav AK, Kumar B, Gaikwad A, Sinha SK, Chaturvedi V, Tripathi RP (2008) Preparation and reactions of sugar azides with alkynes: synthesis of sugar triazoles as antitubercular agents. Carbohydr Res 343(7):1153–1162

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Sharma S, Saxena A, Nepali K, Bedi PMS (2013) Synthesis of 1,2,3-triazole tethered bifunctional hybrids by click chemistry and their cytotoxic studies. Med Chem Res 22(7):3160–3169

    Article  CAS  Google Scholar 

  • Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X (2016) Cu-catalyzed click reaction in carbohydrate chemistry. Chem Rev. doi:10.1021/acs.chemrev.5b00408

  • Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper (I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064

    Article  PubMed  Google Scholar 

  • Vatmurge NS, Hazra BG, Pore VS, Shirazi F, Chavan PS, Deshpande MV (2008) Synthesis and antimicrobial activity of β-lactam-bile acid conjugates linked via triazole. Bioorg Med Chem Lett 18(6):2043–2047

    Article  CAS  PubMed  Google Scholar 

  • Wang X-L, Wan K, Zhou C-H (2010) Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur J Med Chem 45(10):4631–4639

    Article  CAS  PubMed  Google Scholar 

  • Whiting M, Tripp JC, Lin Y-C, Lindstrom W, Olson AJ, Elder JH, Sharpless KB, Fokin VV (2006) Rapid discovery and structure–activity profiling of novel inhibitors of human immunodeficiency virus type 1 protease enabled by the copper (I)-catalyzed synthesis of 1,2,3-triazoles and their further functionalization. J Med Chem 49(26):7697–7710

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson BL, Bornaghi LF, Houston TA, Innocenti A, Supuran CT, Poulsen S-A (2006) A novel class of carbonic anhydrase inhibitors: glycoconjugate benzene sulfonamides prepared by “click-tailing”. J Med Chem 49(22):6539–6548

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson BL, Bornaghi LF, Houston TA, Innocenti A, Vullo D, Supuran CT, Poulsen S-A (2007) Carbonic anhydrase inhibitors: inhibition of isozymes I, II, and IX with triazole-linked O-glycosides of benzene sulfonamides. J Med Chem 50(7):1651–1657

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson BL, Long H, Sim E, Fairbanks AJ (2008) Synthesis of arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall biosynthesis. Bioorg Med Chem Lett 18(23):6265–6267

    Article  CAS  PubMed  Google Scholar 

  • Witczak ZJ, Bielski R (2013) Click chemistry in glycoscience: new developments and strategies. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Yu J-L, Wu Q-P, Zhang Q-S, Liu Y-H, Li Y-Z, Zhou Z-M (2010) Synthesis and antitumor activity of novel 2′,3′-dideoxy-2′,3′-diethanethionucleosides bearing 1,2,3-triazole residues. Bioorg Med Chem Lett 20(1):240–243

    Article  CAS  PubMed  Google Scholar 

  • Zhang H-Z, Wei J-J, Kumar KV, Rasheed S, Zhou C-H (2015) Synthesis and biological evaluation of novel d-glucose-derived 1,2,3-triazoles as potential antibacterial and antifungal agents. Med Chem Res 24(1):182–196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Manisa Celal Bayar University (Project no: BAP-2014-054) and the authors are grateful to Manisa Celal Bayar University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Ay.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ay, K., Ispartaloğlu, B., Halay, E. et al. Synthesis and antimicrobial evaluation of sulfanilamide- and carbohydrate-derived 1,4-disubstitued-1,2,3-triazoles via click chemistry. Med Chem Res 26, 1497–1505 (2017). https://doi.org/10.1007/s00044-017-1864-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-1864-3

Keywords

Navigation