Medicinal Chemistry Research

, Volume 26, Issue 7, pp 1497–1505 | Cite as

Synthesis and antimicrobial evaluation of sulfanilamide- and carbohydrate-derived 1,4-disubstitued-1,2,3-triazoles via click chemistry

  • Kadir Ay
  • Beyza Ispartaloğlu
  • Erkan Halay
  • Emriye Ay
  • İhsan Yaşa
  • Tamer Karayıldırım
Original Research

Abstract

4-Sulfanilamido substitued-1,2,3-triazoles conjugated with monosaccharides (817) including d-glucose, d-galactose, d-mannose, and d-fructose were synthesized in good yields from azidosugars with propargyl sulfanilamides using copper catalyst 1,3-dipolar cycloaddition reaction (CuAAC). The structures of new compounds were elucidated by liquid chromatography-mass spectrometry, infrared, one-dimensional- and two-dimensional-nuclear magnetic resonance techniques. All of the new compounds were tested in vitro against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans for their antibacterial and antifungal activities. Experimental results showed antimicrobial activity with minimum inhibitory concentrations values a ranging from 0.078 to 5.0 mg/mL against test microorganisms.

Keywords

Azidosugar 1,2,3-Triazole Sulfanilamide Antimicrobial Click reaction 

Notes

Acknowledgments

This work was supported by Manisa Celal Bayar University (Project no: BAP-2014-054) and the authors are grateful to Manisa Celal Bayar University for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

44_2017_1864_MOESM1_ESM.docx (7.6 mb)
Supplementary Information

References

  1. Aher NG, Pore VS, Mishra NN, Kumar A, Shukla PK, Sharma A, Bhat MK (2009) Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg Med Chem Lett 19(3):759–763CrossRefPubMedGoogle Scholar
  2. Altimari JM, Niranjan B, Risbridger GP, Schweiker SS, Lohning AE, Henderson LC (2014) Synthesis and preliminary investigations into novel 1,2,3-triazole-derived androgen receptor antagonists inspired by bicalutamide. Bioorg Med Chem Lett 24(21):4948–4953CrossRefPubMedGoogle Scholar
  3. Berthold HJ, Franke S, Thiem J, Schotten T (2010) Ex post glycoconjugation of phthalocyanines. J Org Chem 75(11):3859–3862CrossRefPubMedGoogle Scholar
  4. Carvalho I, Andrade P, Campo VL, Guedes PM, Sesti-Costa R, Silva JS, Schenkman S, Dedola S, Hill L, Rejzek M (2010) ‘Click chemistry’ synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg Med Chem 18(7):2412–2427CrossRefPubMedGoogle Scholar
  5. Da Silva FDC, De Souza MCB, Frugulhetti II, Castro HC, Silmara LDO, De Souza TML, Rodrigues DQ, Souza AM, Abreu PA, Passamani F (2009) Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur J Med Chem 44(1):373–383CrossRefGoogle Scholar
  6. Da Silva FDC, Do Carmo Cardoso MF, Ferreira PG, Ferreira VF (2015) Biological properties of 1H-1,2,3- and 2H-1,2,3-triazoles. In: Dehaen W, Bakulev VA (Eds.) Chemistry of 1,2,3-triazoles. Springer, New York, pp 117–165. Vol. 40Google Scholar
  7. Ernst B, Magnani JL (2009) From carbohydrate leads to glycomimetic drugs. Nat Rev Drug Discov 8:661–677CrossRefPubMedGoogle Scholar
  8. Ferreira SB, Sodero AC, Cardoso MF, Lima ES, Kaiser CR, Silva Jr FP, Ferreira VF (2010) Synthesis, biological activity, and molecular modeling studies of 1H-1,2,3-triazole derivatives of carbohydrates as α-glucosidases inhibitors. J Med Chem 53(6):2364–2375CrossRefPubMedGoogle Scholar
  9. Giffin MJ, Heaslet H, Brik A, Lin Y-C, Cauvi G, Wong C-H, Mcree DE, Elder JH, Stout CD, Torbett BE (2008) A copper (I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J Med Chem 51(20):6263–6270CrossRefPubMedPubMedCentralGoogle Scholar
  10. Heravi MM, Hamidi H, Zadsirjan V (2014) Recent applications of click reaction in the syntheses of 1,2,3-triazoles. Curr Org Synth 11(5):647–675CrossRefGoogle Scholar
  11. Hou J, Liu X, Shen J, Zhao G, Wang PG (2012) The impact of click chemistry in medicinal chemistry. Expert Opin Drug Discov 7(6):489–501CrossRefPubMedGoogle Scholar
  12. Huisgen R (1984) 1,3-Dipolar cycloaddition. Introduction, survey, mechanism. In: Padwa A (Ed.) 1,3-Dipolar cycloaddition chemistry. Wiley, New York, pp 1–176. Vol. 2Google Scholar
  13. Kharb R, Yar MS, Sharma PC (2011) Recent advances and future perspectives of triazole analogs as promising antiviral agents. Mini Rev Med Chem 11(1):84–96CrossRefPubMedGoogle Scholar
  14. Kharb R, Sharma PC, Yar MS (2011) Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem 26(1):1–21CrossRefPubMedGoogle Scholar
  15. Konda S, Rao P, Oruganti S (2014) Click chemistry route to tricyclic monosaccharide triazole hybrids: design and synthesis of substituted hexahydro-4H-pyrano[2,3-f][1,2,3]triazolo[5,1-c][1,4] oxazepines. RSC Adv 4(109):63962–63965CrossRefGoogle Scholar
  16. Lauria A, Delisi R, Mingoia F, Terenzi A, Martorana A, Barone G, Almerico AM (2014) 1,2,3‐Triazole in heterocyclic compounds, endowed with biological activity, through 1,3‐dipolar cycloadditions. Eur J Org Chem 2014(16):3289–3306CrossRefGoogle Scholar
  17. Li L-T, Zhou L-F, Li Y-J, Huang J, Liu R-H, Wang B, Wang P (2012) Facile synthesis of 1,2,3-triazole analogs of SGLT2 inhibitors by ‘click chemistry’. Bioorg Med Chem Lett 22(1):642–644CrossRefPubMedGoogle Scholar
  18. Lopez M, Salmon AJ, Supuran CT, Poulsen SA (2010) Carbonic anhydrase inhibitors developed through ‘click tailing’. Curr Pharm Des 16(29):3277–3287CrossRefPubMedGoogle Scholar
  19. Ma N, Wang Y, Zhao B-X, Ye W-C, Jiang S (2015) The application of click chemistry in the synthesis of agents with anticancer activity. Drug Des Dev Ther 9:1585–1599Google Scholar
  20. Maria De Lourdes GF, Pinheiro LC, Santos-Filho OA, Peçanha MD, Sacramento CQ, Machado V, Ferreira VF, Souza TML, Boechat N (2014) Design, synthesis, and antiviral activity of new 1H-1,2,3-triazole nucleoside ribavirin analogs. Med Chem Res 23(3):1501–1511CrossRefGoogle Scholar
  21. Miner PL, Wagner TR, Norris P (2005) Cu (I)-catalyzed formation of d-mannofuranosyl 1,4-disubstituted 1,2,3-triazolecarbohybrids. Heterocycles 65(5):1035–1049CrossRefGoogle Scholar
  22. Mishra AK, Kumar A (2015) Recent advances in development of sulfonamide derivatives and their pharmacological effects—a review. Am J Pharmacol Sci 3(1):18–24Google Scholar
  23. Padwa A (2008) Aziridines and azirines: Monocyclic. In: Katritzky AR, Ramsden CA, Scriven EFV, Taylor RJK (eds) Comprehensive heterocyclic chemistry III. Elsevier, Oxford, p 1–104. vol. 1CrossRefGoogle Scholar
  24. Petrova KT, Potewar TM, Correia-Da-Silva P, Barros MT, Calhelha RC, Ćiric A, Soković M, Ferreira IC (2015) Antimicrobial and cytotoxic activities of 1,2,3-triazole-sucrose derivatives. Carbohydr Res 417:66–71CrossRefPubMedGoogle Scholar
  25. Piotrowska DG, Balzarini J, Głowacka IE (2012) Design, synthesis, antiviral and cytostatic evaluation of novel isoxazolidine nucleotide analogues with a 1,2,3-triazole linker. Eur J Med Chem 47:501–509CrossRefPubMedGoogle Scholar
  26. Poláková M, Stanton R, Wilson IB, Holková I, Šesták S, Machová E, Jandová Z, Kóňa J (2015) ‘Click chemistry’synthesis of 1-(α-d-mannopyranosyl)-1,2,3-triazoles for inhibition of α-mannosidases. Carbohydr Res 406:34–40CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pore VS, Jagtap MA, Agalave SG, Pandey AK, Siddiqi MI, Kumar V, Shukla PK (2012) Synthesis and antifungal activity of 1,5-disubstituted-1,2,3-triazole containing fluconazole analogues. Med Chem Comm 3(4):484–488CrossRefGoogle Scholar
  28. Raj R, Sharma V, Hopper MJ, Patel N, Hall D, Wrischnik LA, Land KM, Kumar V (2014) Synthesis and preliminary in vitro activity of mono- and bis- 1H-1,2,3-triazole-tethered β-lactam-isatin conjugates against the human protozoal pathogen Trichomonas vaginalis. Med Chem Res 23(8):3671–3680CrossRefGoogle Scholar
  29. Reitz AB, Tuman RW, Marchione CS, Jordan Jr AD, Bowden CR, Maryanoff BE (1989) Carbohydrate biguanides as potential hypoglycemic agents. J Med Chem 32(9):2110–2116CrossRefPubMedGoogle Scholar
  30. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem 114(14):2708–2711CrossRefGoogle Scholar
  31. Sanghvi YS, Bhattacharya BK, Kini GD, Matsumoto SS, Larson SB, Jolley WB, Robins RK, Revankar GR (1990) Growth inhibition and induction of cellular differentiation of human myeloid leukemia cells in culture by carbamoyl congeners of ribavirin. J Med Chem 33(1):336–344CrossRefPubMedGoogle Scholar
  32. Silva GBD, Guimarães BM, Assis SP, Lima VL, Oliveira RND (2013) Ultrasound-assisted synthesis of 1-N-β-d-glucopyranosyl-1H-1,2,3-triazole benzoheterocycles and their anti-inflammatory activities. J Braz Chem Soc 24(6):914–921Google Scholar
  33. Singh BK, Yadav AK, Kumar B, Gaikwad A, Sinha SK, Chaturvedi V, Tripathi RP (2008) Preparation and reactions of sugar azides with alkynes: synthesis of sugar triazoles as antitubercular agents. Carbohydr Res 343(7):1153–1162CrossRefPubMedGoogle Scholar
  34. Singh J, Sharma S, Saxena A, Nepali K, Bedi PMS (2013) Synthesis of 1,2,3-triazole tethered bifunctional hybrids by click chemistry and their cytotoxic studies. Med Chem Res 22(7):3160–3169CrossRefGoogle Scholar
  35. Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X (2016) Cu-catalyzed click reaction in carbohydrate chemistry. Chem Rev. doi: 10.1021/acs.chemrev.5b00408
  36. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper (I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064CrossRefPubMedGoogle Scholar
  37. Vatmurge NS, Hazra BG, Pore VS, Shirazi F, Chavan PS, Deshpande MV (2008) Synthesis and antimicrobial activity of β-lactam-bile acid conjugates linked via triazole. Bioorg Med Chem Lett 18(6):2043–2047CrossRefPubMedGoogle Scholar
  38. Wang X-L, Wan K, Zhou C-H (2010) Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur J Med Chem 45(10):4631–4639CrossRefPubMedGoogle Scholar
  39. Whiting M, Tripp JC, Lin Y-C, Lindstrom W, Olson AJ, Elder JH, Sharpless KB, Fokin VV (2006) Rapid discovery and structure–activity profiling of novel inhibitors of human immunodeficiency virus type 1 protease enabled by the copper (I)-catalyzed synthesis of 1,2,3-triazoles and their further functionalization. J Med Chem 49(26):7697–7710CrossRefPubMedGoogle Scholar
  40. Wilkinson BL, Bornaghi LF, Houston TA, Innocenti A, Supuran CT, Poulsen S-A (2006) A novel class of carbonic anhydrase inhibitors: glycoconjugate benzene sulfonamides prepared by “click-tailing”. J Med Chem 49(22):6539–6548CrossRefPubMedGoogle Scholar
  41. Wilkinson BL, Bornaghi LF, Houston TA, Innocenti A, Vullo D, Supuran CT, Poulsen S-A (2007) Carbonic anhydrase inhibitors: inhibition of isozymes I, II, and IX with triazole-linked O-glycosides of benzene sulfonamides. J Med Chem 50(7):1651–1657CrossRefPubMedGoogle Scholar
  42. Wilkinson BL, Long H, Sim E, Fairbanks AJ (2008) Synthesis of arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall biosynthesis. Bioorg Med Chem Lett 18(23):6265–6267CrossRefPubMedGoogle Scholar
  43. Witczak ZJ, Bielski R (2013) Click chemistry in glycoscience: new developments and strategies. Wiley, Hoboken, NJCrossRefGoogle Scholar
  44. Yu J-L, Wu Q-P, Zhang Q-S, Liu Y-H, Li Y-Z, Zhou Z-M (2010) Synthesis and antitumor activity of novel 2′,3′-dideoxy-2′,3′-diethanethionucleosides bearing 1,2,3-triazole residues. Bioorg Med Chem Lett 20(1):240–243CrossRefPubMedGoogle Scholar
  45. Zhang H-Z, Wei J-J, Kumar KV, Rasheed S, Zhou C-H (2015) Synthesis and biological evaluation of novel d-glucose-derived 1,2,3-triazoles as potential antibacterial and antifungal agents. Med Chem Res 24(1):182–196CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science and LettersManisa Celal Bayar UniversityManisaTurkey
  2. 2.Scientific Analysis and Technological Application and Research CenterUşak UniversityUşakTurkey
  3. 3.Department of Food Technology, Şebinkarahisar School of Applied SciencesGiresun UniversityGiresunTurkey
  4. 4.Department of Biology, Science FacultyEge UniversityİzmirTurkey
  5. 5.Department of Chemistry, Science FacultyEge UniversityİzmirTurkey

Personalised recommendations