Medicinal Chemistry Research

, Volume 26, Issue 7, pp 1516–1527 | Cite as

Chemical constituents and bioactive potential of Portulaca pilosa L vs. Portulaca oleracea L

  • Florentina Gatea
  • Eugenia Dumitra Teodor
  • Ana Maria Seciu
  • Eugenia Nagodă
  • Gabriel Lucian Radu
Original Research


Portulaca pilosa L and Portulaca oleracea L were comparatively studied for the total content of polyphenols and flavonoids, antioxidant activity, individual polyphenols, short-chain organic acids, and saccharides in extracts of plants collected from Bucharest ‘‘delta’’ using spectrometry and capillary electrophoresis. The polysaccharide fractions were assessed for cytotoxicity on normal and tumor cell lines. The results obtained highlighted that Portulaca pilosa could be considered more valuable than Portulaca oleracea because of its higher content in important flavonoids (quercetin 101.70 ± 2.68 μg g−1 dry weight plant material, rutin 96.24 ± 0.74 μg g−1 DW plant material) and some phenolic acids (chlorogenic acid 161.33 ± 0.67 μg g−1 DW plant material, p-coumaric acid 61.40 ± 5.50 μg g−1 DW plant material) of the ethanolic extracts, for its lower content in oxalic acid that is considered anti-nutrient of the aqueous extracts, and for its higher content in saccharides, especially rhamnose and xylose, with consequently higher cytostatic effect of the polysaccharide fraction. The current study presented for the first time the content in polyphenols, short chain organic acids, and saccharides of Portulaca pilosa and proved that this species has noticeable antioxidant activity, low toxicity on normal cells, and high toxicity on tumor cells and could be considered important for health and food industry.


Portulaca oleraceaPortulaca pilosaPolyphenols Saccharides Capillary zone electrophoresis Cytostatic activity 



This work was financially supported by the National Research and Development Agency of Romania, the National Programme Nucleu BIODIVERS 16-190-106/2016.

Conflict of interest

The authors declare no competing interests.


  1. Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A, Aslani F, Hassan MM, Mohd Zainudin MA, Uddin MK (2014) Evaluation of antioxidant compounds, antioxidant activities, and mineral composition of 13 collected purslane (Portulaca oleracea L.) accessions. BioMed Res Int 2014:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  2. Banerjee G, Mukherjee A (2002) Biological activity of a common weed: Portulaca oleracea L.-II. Antifungal activity. Acta Bot Hung 4:205–208CrossRefGoogle Scholar
  3. Besong SA, Michael O, Ezekwe MO, Edith IE (2011) Evaluating the effects of freeze-dried supplements of purslane (Portulaca oleracea) on blood lipids in hypercholesterolemic adults. Int J Nutr Metab 3:43–49Google Scholar
  4. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200CrossRefGoogle Scholar
  5. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Food Sci Technol 28:25–30Google Scholar
  6. Bunning ML, Kendall PA, Stone MB, Stonaker FH, Stushnoff C (2010) Effects of seasonal variation on sensory properties and total phenolic content of 5 lettuce cultivars. J Food Sci 75:S156–S161CrossRefPubMedGoogle Scholar
  7. Chan K, Islam MW, Kamil M, Radhakrishnan R, Zakaria MNM, Habibullah M, Attas A (2000) The analgesic and anti-inflammatory effects of Portulaca oleracea L. subsp. Sativa (Haw.) Celak. J Ethnopharmacol 73:445–451CrossRefPubMedGoogle Scholar
  8. Chen B, Zhou H, Zhao W, Zhou W, Yuan Q, Yang G (2012) Effects of aqueous extract of Portulaca oleracea L. on oxidative stress and liver, spleen leptin, PARα and FAS mRNA expression in high-fat diet induced mice. Mol Biol Rep 39:7981–7988CrossRefPubMedGoogle Scholar
  9. Chen J, Yang F, Guo H, Wu F, Wang X (2015) Optimized hydrolysis and analysis of Radix Asparagi polysaccharide monosaccharide composition by capillary zone electrophoresis. J Sep Sci 38:2327–2331CrossRefPubMedGoogle Scholar
  10. Chen T, Wang J, Li Y, Shen J, Zhao T, Zhang H (2010) Sulfated modification and cytotoxicity of Portulaca oleracea L. polysaccharides. Glycoconj J 27:635–642CrossRefPubMedGoogle Scholar
  11. Chen YG, Shen ZJ, Chen XP (2009) Evaluation of free radicals scavenging and immunity-modulatory activities of Purslane polysaccharides. Int J Biol Macromol 45:448–452CrossRefGoogle Scholar
  12. Chirilă C, Ciocarlan V, Berca M (2002) Atlasul principalelor buruieni din Romania. Editura Ceres, BucurestiGoogle Scholar
  13. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352CrossRefPubMedGoogle Scholar
  14. DAISIE-Delivering Alien Invasive Species Inventories for Europe (2003) Species Factsheet. Portulaca pilosa. Distribution map. Accessed 3 Mar 2017
  15. Dong C, Hayashi K, Lee J, Hayashi T (2010) Characterization of structures and antiviral effects of polysaccharides from Portulaca oleracea L. Chem Pharm Bull (Tokyo) 58:507–510CrossRefGoogle Scholar
  16. Elkhayat ES, Ibrahim SR, Aziz MA (2008) Portulene, a new diterpene from Portulaca oleracea L. J Asian Nat Prod Res 10:1039–1043CrossRefPubMedGoogle Scholar
  17. El-Sayed MI (2011) Effects of Portulaca oleracea L. seeds in treatment of type-2 diabetes mellitus patients as adjunctive and alternative therapy. J Ethnopharmacol 137:643–651CrossRefPubMedGoogle Scholar
  18. Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285CrossRefPubMedGoogle Scholar
  19. Erkan N (2012) Antioxidant activity and phenolic compounds of fractions from Portulaca oleracea L. Food Chem 133:775–781CrossRefGoogle Scholar
  20. Frankowski M (2016) Simultaneous determination of inorganic and organic ions in plant parts of Betula pendula from two different types of ecosystems (Wielkopolski national park and chemical plant in Luboń, Poland). Environ Sci Poll Res 23:11046–11057CrossRefGoogle Scholar
  21. Galli V, Barbas C (2004) Capillary electrophoresis for the analysis of short-chain organic acids in coffee. J Chromat A 1032:299–304CrossRefGoogle Scholar
  22. Gatea F, Teodor ED, Matei AO, Badea GI, Radu GL (2015a) Capillary electrophoresis method validation for 20 Polyphenols separation in propolis and plant extracts. Food Anal Meth 8:1197–1206CrossRefGoogle Scholar
  23. Gatea F, Teodor ED, Paun G, Matei AO, Radu GL (2015b) Capillary electrophoresis method validation for organic acids assessment in probiotics. Food Anal Meth 8:1335–1340CrossRefGoogle Scholar
  24. Gong F, Li F, Zhang L, Li J, Zhang Z, Wang G (2009) Hypoglycemic effects of crude polysaccharide from Purslane. Intern J Mol Sci 10:880–888CrossRefGoogle Scholar
  25. Gu J, Zheng Z, Yuan J, Zhao B, Wang C, Zhang L, Xu Q, Yin G, Feng L, Jia X (2015) Comparison on hypoglycemic and antioxidant activities of the fresh and dried Portulaca oleracea L. in insulin-resistant HepG2 cells and streptozotocin-induced C57BL/6J diabetic mice. J Ethnopharmacol 161:214–223CrossRefPubMedGoogle Scholar
  26. Honda S, Suzuki S, Taga A (2003) Analysis of carbohydrates as 1-phenyl-3-methyl-5-pyrazolone derivatives by capillary/microchip electrophoresis and capillary electrochromatography. J Pharm Biomed Anal 30:1689–1714CrossRefPubMedGoogle Scholar
  27. Karimi G, Hosseinzadeh H, Ettehad N (2004) Evaluation of the gastric antiulcerogenic effects of Portulaca oleracea L. extracts in mice. Phytother Res 18:484–487CrossRefPubMedGoogle Scholar
  28. Li Y-P, Yao L-H, Wu G-J, Pi X-F, Gong Y-C, Ye R-S, Chen-Xi Wang C-X (2014) Antioxidant activities of novel small-molecule polysaccharide fractions purified from Portulaca oleracea L. Food Sci Biotechnol 23:2045–2052CrossRefGoogle Scholar
  29. Lim YY, Quah EPL (2007) Antioxidant properties of different cultivars of Portulaca oleracea. Food Chem 103:734–740CrossRefGoogle Scholar
  30. Lin JY, Tang CY (2007) Antioxidant properties of different cultivars of Portulaca oleracea. Food Chem 103:734–740CrossRefGoogle Scholar
  31. Lopez-Bucio J, Nieto-Jacobo MF, Ramirez-Rodriguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160:1–13CrossRefPubMedGoogle Scholar
  32. Mendes LPM, Maciel KM, Vieira ABR, Mendonça LCV, Silva RMF, Rolim Neto PJ, Barbosa WLR, Vieira JMS (2011) Antimicrobial activity of ethanol extracts of Peperomia pellucida and Portulaca pilosa. Rev Ciênc Farm Básica Apl 32:121–125Google Scholar
  33. Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  34. Nagodă E, Comănescu P, Anastasiu P (2013) Phemeranthus confertiflorus: new alien species to Europe. J Plant Develop 20:141–147Google Scholar
  35. Petropoulos P, Karkanis A, Martins N, Ferreira ICFR (2016) Phytochemical composition and bioactive compounds of common purslane (Portulaca oleracea L.) as affected by crop management practices. Trends in Food Sci Technol 55:1–10CrossRefGoogle Scholar
  36. PIER-Pacific Island Ecosystems at Risk (2005) Portulaca pilosa L., Portulacaceae. Accesed on 24 Nov 2015
  37. Rashed AN, Afifi FU, Disi AM (2003) Simple evaluation of the wound healing activity of a crude extract of Portulaca oleracea L. (growing in Jordan) in Mus musculus JVI-1. J Ethnopharmacol 88:131–136CrossRefPubMedGoogle Scholar
  38. Roidaki A, Zoumpoulakis PG, Proestos C (2015) Comparison of extraction methods for the determination of antioxidant activity in extracts of Hippophae Rhamnoides L. and Lippia Citriodora. The effect of seasonal collection. Austin J Nutri Food Sci 3:1–8Google Scholar
  39. Shanker N, Debnar S (2015) Impact of dehydration of purslane on retention of bioactive molecules and antioxidant activity. J Food Sci Technol 52:6631–6638CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shen H, Tang G, Zeng G, Yang Y, Cai X, Li D, Liu H, Zhou N (2013) Purification and characterization of an antitumor polysaccharide from Portulaca oleracea L. Carbohydr Polym 93:395–400CrossRefPubMedGoogle Scholar
  41. Singleton VL, Rossi Jr JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  42. Siriamornpun S, Suttajit M (2010) Microchemical components and antioxidant activity of different morphological parts of Thai wild purslane (Portulaca oleracea). Weed Sci 58:182–188CrossRefGoogle Scholar
  43. Stanojević L, Stanković M, Nikolić V, Nikolić L, Ristić D, Čanadanovic-Brunet J, Tumbas V (2009) Antioxidant activity and total phenolic and flavonoid contents of Hieracium pilosella L. extracts. Sensors 9:5702–5714CrossRefPubMedPubMedCentralGoogle Scholar
  44. Staub AM (1965) Removal of proteins: Sevag method. In: Whistler RL (ed) Methods in carbohydrate chemistry. Academic, New York, pp 5–6Google Scholar
  45. Sultana A, Rahman K (2013) Portulaca oleracea linn: a global panacea with ethnomedicinal and pharmacological potential. Int J Pharm Sci 5:33–39Google Scholar
  46. Teodor ED, Gatea F, Albu C, Radulescu MC, Chira A, Radu GL (2015) Polyphenols, radical scavenger activity, short-chain organic acids and heavy metals of several plants extracts from “Bucharest Delta. Chem Pap 69:1582–1590CrossRefGoogle Scholar
  47. Truică GI, Teodor ED, Radu GL (2013) Organic acids assessments in medicinal plants by capillary electrophoresis. Rev Roum Chim 58:809–814Google Scholar
  48. Uddin K, Juraimi AS, Ali E, Ismail MR (2012) Evaluation of antioxidant properties and mineral composition of Purslane (Portulaca oleracea L.) at different growth stages. Int J Mol Sci 13:10257–10267CrossRefPubMedPubMedCentralGoogle Scholar
  49. Xu X, Yu L, Chen G (2006) Determination of flavonoids in Portulaca oleracea L. by capillary electrophoresis with electrochemical detection. J Pharm Biomedical Anal 41:493–499CrossRefGoogle Scholar
  50. Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in Wetlands: opportunities, opportunists and outcomes. Crit Rev Plant Sci 23:431–445CrossRefGoogle Scholar
  51. Zhang XJ, Ji YB, Qu ZY, Xia JC, Wang L (2002) Experimental studies on antibiotic functions of Portulaca oleracea L. in vitro. Chinese J Microecology 14:277–280Google Scholar
  52. Zhao R, Gao X, Cai Y, Shao X, Jia G, Huang Y, Qin X, Wang J, Zheng X (2013) Antitumor activity of Portulaca oleracea L. polysaccharides against cervical carcinoma in vitro and in vivo. Carbohydr Polym 96:376–383CrossRefPubMedGoogle Scholar
  53. Zidan Y, Bouderbala S, Djellouli F, Lacaille-Dubois MA, Bouchenak M (2014) Portulaca oleracea reduces triglyceridemia, cholesterolemia, and improves lecithin: cholesterol acyltransferase activity in rats fed enriched-cholesterol diet. Phytomedicine 21:1504–1508CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.National Institute for Biological Sciences, Centre of BioanalysisBucharestRomania
  2. 2.Department of Cell and Molecular BiologyNational Institute for Biological SciencesBucharestRomania
  3. 3.University of Bucharest, Botanical Garden Dimitrie BrandzaBucharestRomania
  4. 4.Faculty of Applied Chemistry and Materials ScienceUniversity ‘‘Politehnica” BucharestBucharestRomania

Personalised recommendations