Advertisement

Medicinal Chemistry Research

, Volume 26, Issue 7, pp 1405–1414 | Cite as

Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids

  • Juan C. Coa
  • Elisa García
  • Miguel Carda
  • Raúl Agut
  • Iván D. Vélez
  • July A. Muñoz
  • Lina M. Yepes
  • Sara M. Robledo
  • Wilson I. Cardona
Original Research

Abstract

We report herein the synthesis and biological activities (cytotoxicity, leishmanicidal and trypanocidal) of six quinoline-chalcone and five quinoline-chromone hybrids. The synthesized compounds were evaluated against amastigotes forms of Leishmania (V) panamensis, which is the most prevalent Leishmania species in Colombia and Trypanosoma cruzi, which is the major pathogenic species to humans. Cytotoxicity was evaluated against human U-937 macrophages. Compounds 812, 20, 23 and 24 showed activity against Leishmania (V) panamensis, while compounds 9, 10, 12, 20 and 23 had activity against Trypanosoma cruzi with EC50 values lower than 18 mg mL−1. 20 was the most active compound for both Leishmania (V) panamensis and Trypanosoma cruzi with EC50 of 6.11 ± 0.26 μg mL−1 (16.91 μM) and 4.09 ± 0.24 (11.32 μM), respectively. All hybrids compounds showed better activity than the anti-leishmanial drug meglumine antimoniate. Compounds 20 and 23 showed higher activity than benznidazole, the current anti-trypanosomal drug. Although these compounds showed toxicity for mammalian U-937 cells,they still have the potential to be considered as candidates to antileishmanial or trypanocydal drug development.

Keywords

Leishmaniasis Chagas disease Antiprotozoal activity Quinoline Hybrids molecules 

Notes

Acknowledgements

The authors thank Universidad de Antioquia (grant CODI IN656CE and CIDEPRO) for financial support.

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLOS One 7:e35671CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baloch N, Alkahraman Y, Zaidi M, Madkour H (2012) Evaluation of 6, 8-dichloro-2-methyl-4H-chromen-4-one derivatives as Antileishmanial agents. Glob J Sci Front Res Chem 12:1–7Google Scholar
  3. Bhutta ZA, Sommerfeld J, Lassi ZS, Salam RA, Das JK (2014) Tackling the existing burden of infection diseases in the developing world: existing gaps and the way forward. Infect Dis Poverty 3:1–6CrossRefGoogle Scholar
  4. Boeck P, Bandeira Falcão CA, Leal PC, Yones RA, Filho VC, Torres-Santos EC, Rossi-Bergmann B (2006) Synthesis of chalcone analogues with increased antileishmanial activity. Bioorg Med Chem 14:1538–1545CrossRefPubMedGoogle Scholar
  5. Buckner FS, Verlinde CL, La Flamme AC, Van Voorhis WC (1996) Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob Agents Chemother 40:2592–2597PubMedPubMedCentralGoogle Scholar
  6. Cardona W, Arango V, Domínguez J, Robledo S, Muñoz D, Figadère B, Velez ID, Sáez J (2013) Synthesis and leishmanicidal activity of new bis-alkylquinolines. J Chil Chem Soc 58:1709–1712CrossRefGoogle Scholar
  7. Cardona W, Guerra D, Restrepo A (2014) Reactivity of δ-substituted α,β-unsaturated cyclic lactones with antileishmanial activity. Mol Simul 40:477–484CrossRefGoogle Scholar
  8. Chatelain E, Ioset JR (2011) Drug discovery and development for neglected diseases: the DNDi model. Drug Des Devel Ther 16:175–181Google Scholar
  9. Chen M, Zhai L, Christensen SB, Theander TG, Kharazmi A (2001) Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrobiol. Agents Chemother 45:2023–2029CrossRefGoogle Scholar
  10. Coa JC, Castrillón W, Cardona W, Carda M, Ospina V, Muñoz JA, Vélez ID, Robledo SM (2015) Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids. Eur J Med Chem 101:746–753CrossRefPubMedGoogle Scholar
  11. Den Boer M, Argaw D, Jannin J, Alvar J (2011) Leishmaniasis impact and treatment access. Clin Microbiol Infect 17:1471–1477CrossRefGoogle Scholar
  12. Dietze R, Carvalho SF, Valli LC, Berman J, Brewer T, Milhous W, Sanchez J, Schuster B, Grogl M (2001) Phase 2 trial of WR6026, an orally administered 8-aminoquinoline, in the treatment of visceral leishmaniasis caused by Leishmania chagasi. Am J Trop Med Hyg 65:685–689CrossRefPubMedGoogle Scholar
  13. Ellis GP, Barker G (1972) Chromone-2- and -3-carboxylic acids and their derivatives. Prog Med Chem 9:65–116CrossRefPubMedGoogle Scholar
  14. Finney JD (1978) Probit analysis: statistical treatment of the sigmoid response curve, 3rd ed.. Cambridge University Press, Cambridge, p 550Google Scholar
  15. Franck X, Fournet A, Prina E, Mahieux R, Hocquemiller R, Figadère B (2004) Biological evaluation of substituted quinolones. Bioorg Med Chem Lett 14:3635–3638CrossRefPubMedGoogle Scholar
  16. Hadjeri M, Barbier M, Ronot X, Mariotte AM, Boumendjel A, Boutonnat J (2003) Modulation of P- glycoprotein-mediated multidrug resistance by flavonoid derivatives and analogues. J Med Chem 46:2125–2131CrossRefPubMedGoogle Scholar
  17. Horton DA, Boume GT, Smythe ML (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 103:893–930CrossRefPubMedGoogle Scholar
  18. Houghton PJ (2000) Chemistry and biological activity of natura land semi-synthetic 450 chromone alkaloids. Stud Nat Prod Chem 21:123–155CrossRefGoogle Scholar
  19. Insuasty B, Ramirez J, Becerra D, Echeverry C, Quiroga J, Abonia R, Robledo SM, Velez ID, Upegui Y, Muñoz JA, Ospina V, Nogueras M, Cobo J (2015) An efficient synthesis of a new caffeine-based chalcones, pyrazolines and pyrazolo[3-4-b][1-4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur J Chem Med 93:401–413CrossRefGoogle Scholar
  20. Kayser O, Kiderlen AF (2001) In vitro leishmanicidal activity of naturally occurring chalcones. Phytother Res 15:148–152CrossRefPubMedGoogle Scholar
  21. Keenan M, Chaplin JH (2015) A new era for chagas disease drug discovery? Prog Med Chem 54:185–230CrossRefPubMedGoogle Scholar
  22. Li SY, Wang XB, Xie SS, Jian N, Wang KD, Yao HQ, Sun HB, Kong LY (2013) Multifunctional tacrine-flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur J Med Chem 69:632–646CrossRefPubMedGoogle Scholar
  23. Liu M, Wilairat P, Croft SL, Tand AL, Go ML (2003) Structure-activity relationships of antileishmanial and antimalarial chalcones. Bioorg Med Chem 11:2729–2738CrossRefPubMedGoogle Scholar
  24. Mallick S, Dutta A, Ghosh J, Maiti S, Mandal AK, Banerjee R, Bandyopadhyay C, Pal C (2011) Protective therapy with novel chromone derivative against Leishmania donovani infection induces Th1 response in vivo. Chemotherapy 57:388–393CrossRefPubMedGoogle Scholar
  25. Mohammed AF, Fournet A, Prina E, Mouscadet JF, Franck X, Hocquemiller R, Figadère B, Fakhfakh MA (2003) Synthesis and biological evaluation of substituted quinolines: potential treatment of protozoal and retroviral co-infections. Bioorg Med Chem 11:5013–5023CrossRefGoogle Scholar
  26. Mottram JC, Coombs GH, Alexander J (2004) Cysteine peptidases as virulence factors of Leishmania. Curr Opin Microbiol 7:375–381CrossRefPubMedGoogle Scholar
  27. Nakayama H, Loiseau PM, Bories C, De Ortiz ST, Schinini A, Serna E, Rojas de Arias A, Fakhfakh MA, Franck X, Figadère B, Hocquemiller R, Fournet A (2005) Efficacy of orally administered 2- substituted quinolines in experimental murine cutaneous and visceral leishmaniases. Antimicrob Agents Chemother 49:4950–4956CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nouvellet P, Cucunubá ZM, Gourbière S (2015) Ecology, evolution and control of Chagas disease: a century of neglected modelling and promising future. Adv Parasitol 87:135–191CrossRefPubMedGoogle Scholar
  29. Otero E, Vergara S, Robledo SM, Cardona W, Carda M, Vélez ID, Rojas C, Otálvaro F (2014) Synthesis, leishmanicidal and cytotoxic activity of triclosan-chalcone, triclosan-chromone and triclosan-coumarin hybrids. Molecules 19:13251–13266CrossRefPubMedGoogle Scholar
  30. Palit P, Paira P, Hazra A, Banerjee S, Das Gupta A, Dastidar S, Mondal N (2009) Phase transfer catalyzed synthesis of bis-quinolines: antileishmanial activity in experimental visceral leishmaniasis and in vitro antibacterial evaluation. Eur J Med Chem 44:845–853CrossRefPubMedGoogle Scholar
  31. Peng Y, Song G (2002) Combined microwave and ultrasound assisted Williamson ether synthesis in the absence of phase-transfer catalysts. Green Chem 4:349–351CrossRefGoogle Scholar
  32. Peyman S, Minoo D, Mohammad AZ, Mohammad AB (2004) Silica sulfuric acid as an efficient and reusable reagent for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free conditions. J Braz Chem Soc 15:773–776CrossRefGoogle Scholar
  33. Pulido SA, Muñoz DL, Restrepo AM, Mesa CV, Alzate JF, Vélez ID, Robledo SM (2012) Improvement of the green fluorescent protein reporter system in Leishmania spp. for the in vitro and in vivo screening of antileishmanial drugs. Acta Trop 122:36–45CrossRefPubMedGoogle Scholar
  34. Suresh K, Sandhya B, Himanshu G (2009) Biological activities of quinoline derivatives. Mini Rev Med Chem 9:1648–1654CrossRefGoogle Scholar
  35. Taylor VM, Cedeño DL, Muñoz DL, Jones MA, Lash TD, Young AM, Constantino MH, Esposito N, Vélez ID, Robledo SM (2011) In vitro and in vivo studies of the utility of dimethyl and diethyl carbaporphyrin ketals in treatment of cutaneous leishmaniasis. Antimicrob Agents Chemother 55:4755–4764CrossRefPubMedPubMedCentralGoogle Scholar
  36. Tempone A, Melo A, Da Silva P, Brandt C, Martinez F, Borborema A (2005) Synthesis and antileishmanial activities of novel 3-substituted quinolones. Agents chemother 49:1076–1080CrossRefGoogle Scholar
  37. Vieira NC, Herrenknecht C, Vacus J, Fournet A, Bories C, Figadère B, Espindola LS, Loiseau PM (2008) Selection of the most promising 2-substituted quinoline as antileishmanial candidate for clinical trials. Biomed Pharmacother 62:684–689CrossRefPubMedGoogle Scholar
  38. World Health Organization (2013) Why are some tropical diseases called ‘neglected’ http://www.who.int/features/qa/58/en/. Accessed 4 Dec 2013

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Juan C. Coa
    • 1
  • Elisa García
    • 1
  • Miguel Carda
    • 2
  • Raúl Agut
    • 2
  • Iván D. Vélez
    • 3
  • July A. Muñoz
    • 3
  • Lina M. Yepes
    • 3
  • Sara M. Robledo
    • 3
  • Wilson I. Cardona
    • 1
  1. 1.Chemistry of Colombian Plants, Institute of Chemistry, Exact and Natural Sciences SchoolUniversidad de Antioquia-UdeAMedellínColombia
  2. 2.Department of Inorganic and Organic ChemistryJaume I UniversityCastellónSpain
  3. 3.PECET-Medical Research Institute, School of MedicineUniversidad de Antioquia-UdeAMedellínColombia

Personalised recommendations