Medicinal Chemistry Research

, Volume 26, Issue 7, pp 1469–1480 | Cite as

Efficient synthesis and antimicrobial evaluation of 2-((1-substituted-1H-1,2,3-triazol-4-yl)-1-naphthaldehydes and their oxime derivatives

  • Pinki Yadav
  • Kashmiri Lal
  • Poonam Rani
  • Satbir Mor
  • Ashwani Kumar
  • Anil Kumar
Original Research

Abstract

A series of 2-((1-substituted-1H-1,2,3-triazol-4-yl)-1-naphthaldehydes was prepared by the propargylation of 2-hydroxynaphthaldehyde followed by Copper(I)-catalyzed azide-alkyne cycloaddition with various organic azides. 2-((1-substituted-1H-1,2,3-triazol-4-yl)-1-naphthaldehyde analogues were transformed to corresponding oxime derivatives upon grinding with hydroxylamine hydrochloride under solvent free conditions. All the synthesized compounds were characterized by various analytical and spectral techniques and screened in vitro for antimicrobial activity. The activity data revealed that most of the compounds exhibited good to significant activities. Compounds 4c and 5c exhibited very good and broad spectrum activity towards all the tested bacterial strains. Further, to understand the binding interactions, 4c and 5c were docked into the active sites of E. coli topoisomerase II DNA gyrase.

Keywords

1,2,3-Triazoles Click Chemistry Green chemistry Homogenous catalysis Molecular modeling 

Notes

Acknowledgements

We are grateful to Central instrumentation laboratory, Guru Jambheshwar University of Science & Technology, Hisar for running NMR and IR spectra of the synthesized compounds. One of the authors (PY) thanks Haryana State Council for Science & Technology (HSCST) for providing financial support in form of Junior Research Fellowship.

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Abdel-Wahab BF, Abdel-Latif E, Mohameda HA, Awad GEA (2012) Design and synthesis of new 4-pyrazolin-3-yl-1,2,3-triazoles and 1,2,3-triazol-4-yl-pyrazolin-1-ylthiazoles as potential antimicrobial agents. Eur J Med Chem 52:263–268CrossRefPubMedGoogle Scholar
  2. Banday AH, Shameem SA, Ganai BA (2012) Antimicrobial studies of unsymmetrical bis-1,2,3-triazoles. Org Med Chem Lett 2:13–19CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bakunov SA, Bakunov SM, Wenzler T, Ghebru M, Werbovetz KA, Brun R, Tidwell RR (2010) Synthesis and antiprotozoal activity of cationic 1,4-diphenyl-1H-1,2,3-triazoles. J Med Chem 53:254–272CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cappucino JG, Sherman N (eds) (1999) Cultivation of microorganisms: Nutritional and physical requirements, and enumeration of microbial population. In: Microbiology - a laboratory manual, 4th edn. Addison Wesley Longman Inc, Harlow, p 263 Google Scholar
  5. Chakravarti B, Akhtar T, Rai B, Yadav M, Siddiqui JA, Dwivedi SKD, Thakur R, Singh AK, Singh AK, Kumar H, Khan K, Pal S, Rath SK, Lal J, Konwar R, Trivedi AK, Datta D, Mishra DP, Godbole MM, Sanyal S, Chattopadhyay N, Kumar A (2014) Thioaryl naphthylmethanone oxime ether analogs as novel anticancer agents. J Med Chem 57:8010–8025CrossRefPubMedGoogle Scholar
  6. Chen QH, Rao PNP, Knaus EE (2006) Synthesis and biological evaluation of a novel class of rofecoxib analogues as dual inhibitors of cyclooxygenases (COXs) and lipoxygenases (LOXs). Bioorg Med Chem 14:7898–7909CrossRefPubMedGoogle Scholar
  7. Chiang YH (1971) Reaction and mechanism of the chlorination of oximes in commercial chloroform and methylene chloride. J Org Chem 36:2146–2155CrossRefGoogle Scholar
  8. Damljanovic I, Vukic´evic M, Vukic´evic RD (2006) A simple synthesis of oximes. Monatsh Chem 137:301–305CrossRefGoogle Scholar
  9. Dave PR, Forshar F (1996) Facile preparation of 3,7-diazabicyclo[3.3.0]octane and 3,7,10-triheterocyclic [3.3.3]propellane ring systems from 1,5-diazacyclooctane 3,7-derivatives(1). J Org Chem 61:8897–8903CrossRefPubMedGoogle Scholar
  10. Dewan SK, Singh R, Kumar A (2006) One pot synthesis of nitriles from aldehydes and hydroxylamine hydrochloride using sodium sulphate (anhyd) and sodium bicarbonate in dry media under microwave irradiation. Arkivoc ii:41–44Google Scholar
  11. Discovery Studio Visualizer (2012) Version 2.5.5.9350. Accelrys Software Inc. © 2005–2012Google Scholar
  12. Dunbrack Jr RL (2002) Rotamer libraries in the 21st century. Curr Opin Struct Biol 12:431–440CrossRefPubMedGoogle Scholar
  13. Donaruma LG, Helst WZ (1960) The Backmann rearrangement. Org React 11, 1Google Scholar
  14. Greene TW, Wuts PGM (1999) Protective groups in organic synthesis. 3rd edn. Wiley, Toronto, p 355Google Scholar
  15. Hajipour AR, Mahboubghah N (1998) 1-Benzyl-4-aza-1-azoniabicyclo[2.2.2]octane periodate: a mild and efficient oxidant for the cleavage of oxime double bonds under anhydrous conditions. J Chem Res 3:22–123Google Scholar
  16. Hainzl D, Loureiro AI, Parada A, Soares-Da-Silva P (2002) Metabolism of 10,11-dihydro-10-hydroxyimino-5H-dibenz[b,f]azepine-5-carboxamide, a potent anti-epileptic drug. Xenobiotica 32:131–140CrossRefPubMedGoogle Scholar
  17. Huisgen R (1984) 1,3-dipolar cycloaddition chemistry. In: Padwa A (ed) Vol. 1. Wiley, NewYork, p 1Google Scholar
  18. Hwu JR, Tseng WN, Patel HV, Wong FF, Horng DN, Liaw BR, Lin LC (1999) Mono-deoxygenation of nitroalkanes, nitrones, and heterocyclic N-oxides by hexamethyldisilane through 1,2-elimination: Concept of “counterattack reagent”. J Org Chem 64:2211–2218CrossRefGoogle Scholar
  19. Jokanovic M, Stojiljkovic MP (2006) Current understanding of the application of pyridinium oximes as cholinesterase reactivators in treatment of organophosphate poisoning. Eur J Pharmacol 553:10–17CrossRefPubMedGoogle Scholar
  20. Joule JA, Mills K (2000) Heterocyclic chemistry. Blackwell Science, OxfordGoogle Scholar
  21. Kaushik CP, Lal K, Kumar A, Kumar S (2014) Synthesis and biological evaluation of amino acid-linked 1,2,3-bistriazole conjugates as potential antimicrobial agents. Med Chem Res 23:2995–3004CrossRefGoogle Scholar
  22. Kataoka H, Horiyama S, Yamaki M, Oku H, Ishiguro K, Katagi T, Takayama M, Semma M, Ito Y (2002) Anti-inflammatory and antiallergic activities of hydroxylamine and related compounds. Biol Pharm Bull 25:1436–1441CrossRefPubMedGoogle Scholar
  23. Keri RS, Patil SA, Budagumpi S, Nagaraja BM (2015) Triazole: a promising antitubercular agent. Chem Biol Drug Des 86:410–423CrossRefPubMedGoogle Scholar
  24. Kirilmis C, Koca M, Serv˙I S, Gür S (2009) Synthesis and antimicrobial activity of dinaphtho[2,1-b]furan-2-yl-methanone and their oxime derivatives. Turk J Chem 33:375–384Google Scholar
  25. Kizil M, Murphy JA (1997) A new free radical route to oximes using alkyl halides, hexabutylditin and readily available nitrite esters. Tetrahedron 53:16847–16858CrossRefGoogle Scholar
  26. Kleeman A, Engel J, Kutscher B, Reichert D (1999) Pharmaceutical substances, 3rd edn. Thieme, Stuttgart, New York, p 1332Google Scholar
  27. Kumar A, Kumar S, Jain S, Kumar P, Goyal R (2013) Study of binding of pyridoacridine alkaloids on topoisomerase II using in silicon tools. Med Chem Res 22:5431–5441CrossRefGoogle Scholar
  28. Lal K, Kaushik CP, Kumar A (2015) Antimicrobial evaluation, QSAR and docking studies of amide-linked 1,4-disubstituted 1,2,3-bistriazoles. Med Chem Res 24:3258–3271CrossRefGoogle Scholar
  29. Lal K, Kaushik CP, Kumar K, Kumar A, Qazi AK, Hamid A, Jaglan S (2014) One-pot synthesis and cytotoxic evaluation of amide-linked 1,4-disubstituted 1,2,3-bistriazoles. Med Chem Res 23:4761–4770CrossRefGoogle Scholar
  30. Liu KC, Shelton BR, How RK (1980) A particularly convenient preparation of benzohydroximinoyl chlorides (nitrile oxide precursors). J Org Chem 45:3916–3918CrossRefGoogle Scholar
  31. Marvin Sketch 5.0.3 copyright ©1998–2008 Chem Axon Ltd AGoogle Scholar
  32. Molinspiration Chemoinformatics Brastislava, Slovak Republic, (2014) Available from: http://www.molinspiration.com/cgibin/properties
  33. Negi S, Matsukura M, Mizuno M, Miyake K, Minami N (1996) Synthesis of (2R)-1-(4-Chloro-2-pyridyl)-2-(2-pyridyl)ethylamine: a selective oxime reduction and crystallization-induced asymmetric transformation. Synthesis 8:991–996CrossRefGoogle Scholar
  34. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefPubMedGoogle Scholar
  35. Plech T, Kaproń B, Paneth A, Kosikowska U, Malm Anna, Strzelczyk A, Stączek P, Świątek Ł, Rajtar B, Polz-Dacewicz M (2015) Search for factors affecting antibacterial activity and toxicity of 1,2,4-triazole-ciprofloxacin hybrids. Eur J Med Chem 97:94–103CrossRefPubMedGoogle Scholar
  36. Pokrovskaya V, Belakhov V, Hainrichson M, Yaron S, Baasov T (2009) Design, synthesis, and evaluation of novel fluoroquinolone−aminoglycoside hybrid antibiotics. J Med Chem 5:2243–2254CrossRefGoogle Scholar
  37. Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37:320–330CrossRefPubMedGoogle Scholar
  38. PyMol (TM) (2008) Evaluation Product Delano Scientific LLC. http://www.pymol.org/funding.html
  39. Rai D, Chen W, Zhan P, Liu H, Tian Y, Liang X, Clercq ED, Pannecouque C, Balzarini J, Liu X (2014) Synthesis and anti-HIV activity of 4-(Naphthalen-1-yl)-1,2,5-thiadiazol-3-hydroxyl derivatives. Chem Biol Drug Des 84:420–430CrossRefPubMedGoogle Scholar
  40. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599CrossRefGoogle Scholar
  41. Saikia L, Baruah JM, Thakur AJ (2011) A rapid, convenient, solventless green approach for the synthesis of oximes using grindstone chemistry. Org Med Chem Lett 1:1–12CrossRefGoogle Scholar
  42. Saracoglu N (2007) (Bioactive Hetocycles V) Top Heterocycl Chem 11:145–178Google Scholar
  43. Singh G, Arora A, Mangat SS, Rani S, Kaur H, Goyal K, Sehgal R, Maurya IK, Tewari R, Choquesillo-Lazarte D, Sahoo S, Kaur N (2016) Design, synthesis and biological evaluation of chalconyl blended triazole allied organosilatranes as giardicidal and trichomonacidal agents. Eur J Med Chem 108:287–300CrossRefPubMedGoogle Scholar
  44. Smith PAS, Gloyer SE (1975) Oxidation of dibenzylhydroxylamines to nitrones: Effects of structure and oxidizing agent on composition of the products. J Org Chem 40:2508–2512CrossRefGoogle Scholar
  45. Song BA, Liu XH, Yang S, Hu DY, Jin LH, Zhang YT (2005) Recent advance in synthesis and biological activity of oxime derivatives. Chin J Org Chem 25:507–525Google Scholar
  46. Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100:1025–1074CrossRefPubMedGoogle Scholar
  47. Tietze LF, Bell HP, Chandrasekhar S (2003) Natural product hybrids as new leads for drug discovery. Angew Chem Int Ed 42:3996–4208CrossRefGoogle Scholar
  48. Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064CrossRefPubMedGoogle Scholar
  49. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260CrossRefPubMedGoogle Scholar
  50. Xu S, Zhung X, Pan X, Zhang Z, Duan L, Liu Y, Zhang L, Ren X, Ding K (2013) 1-Phenyl-4-benzoyl-1H-1,2,3-triazoles as orally bioavailable transcriptional function suppressors of estrogen-related receptor α. J Med Chem 56:4631–4640CrossRefPubMedGoogle Scholar
  51. Xu X, Wu Y, Liu W, Sheng C, Yao J, Dong G, Fang K, Li J, Yu Z, Min X, Zhang H, Miao Z, Zhang W (2016) Discovery of 7-methyl-10-hydroxyhomocamptothecins with 1,2,3-triazole moiety as potent topoisomerase I inhibitors. Chem Biol Drug Des doi: 10.1111/cbdd.12767
  52. Xu Y, Chunquan SC, Wanga W, Che X, Cao Y, Dong G, Wang S, Ji H, Miao Z, Yao J, Zhang W (2010) Structure-based rational design, synthesis and antifungal activity of oxime-containing azole derivatives. Bioorg Med Chem Lett 20:2942–2945CrossRefPubMedGoogle Scholar
  53. Ying NM, Xin WB, Cai ZW, Jiang YS (2015) The application of click chemistry in the synthesis of agents with anticancer activity. Drug Des Develop Ther 9:1585–1599Google Scholar
  54. Zhao Y, Abraham MH, Lee J, Hersey A, Luscombe NC, Beck G, Sherborne B, Cooper I (2002) Rate-limited steps of human oral absorption and QSAR studies. Pharm Res 19:1446–1457CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Pinki Yadav
    • 1
  • Kashmiri Lal
    • 1
  • Poonam Rani
    • 1
  • Satbir Mor
    • 1
  • Ashwani Kumar
    • 2
  • Anil Kumar
    • 3
  1. 1.Department of ChemistryGuru Jambheshwar University of Science and TechnologyHisarIndia
  2. 2.Department of Pharmaceutical SciencesGuru Jambheshwar University of Science and TechnologyHisarIndia
  3. 3.Department of Bio and NanotechnologyGuru Jambheshwar University of Science and TechnologyHisarIndia

Personalised recommendations