Advertisement

Medicinal Chemistry Research

, Volume 26, Issue 7, pp 1574–1584 | Cite as

Synthesis and antioxidant activity of a new class of pyrazolyl indoles, thiazolyl pyrazolyl indoles

  • Nagarjuna Ummadi
  • Sravya Gundala
  • Padmavathi Venkatapuram
  • Padmaja Adivireddy
Original Research

Abstract

A new class of bis and tris heterocycles–pyrazolyl indoles and thiazolyl pyrazolyl indoles were prepared from the Michael acceptor (E)-3-(1H-indol-3-yl)-1-arylprop-2-en-1-ones by ultrasound irradiation technique and tested for antioxidant activity. The thiazolyl pyrazolyl indoles and pyrazolyl indoles showed greater radical scavenging activity than pyrazolinyl indoles. Amongst all the tested compounds, 3-(1-(4′′-(p-chlorophenyl)thiazol-2′′-yl)-3′-p-tolyl-1H-pyrazol-5′-yl)-1H-indole (7b) and 3-(1-(4′′-(p-chlorophenyl)thiazol-2′′-yl)-3′-(p-methoxyphenyl)-1H-pyrazol-5′-yl)-1H-indole (7c) displayed promising antioxidant activity when compared with standard drug ascorbic acid. The compounds having electron donating groups (CH3, OCH3) on the phenyl ring exhibited greater antioxidant activity than those with electron withdrawing groups (Cl, Br, NO2).

Keywords

Indole Pyrazole Thiazole Cyclocondensation Antioxidant activity 

Notes

Acknowledgements

The authors are grateful to University Grants Commission, New Delhi for the sanction of UGC-BSR fellowship. The authors are also thankful to Prof. Ch. Appa Rao, Department of Bio-chemistry (SVU), for providing facilities to carry out the antioxidant activity.

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Abdel-Aziz M, El Din A, Abuo Rahma G, Hassan AA (2009) Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur J Med Chem 44:3480–3487CrossRefPubMedGoogle Scholar
  2. Ahuja P, Siddiqui N (2014) Anticonvulsant evaluation of clubbed indole-1,2,4-triazine derivatives: a synthetic approach. Eur J Med Chem 80:509–522CrossRefPubMedGoogle Scholar
  3. Altintop MD, Ozdemir A, Ilgin S, Atli O (2014) Synthesis and biological evaluation of new pyrazole-based thiazolyl hydrazone derivatives as potential anticancer agents. Lett Drug Des Discov 11:833–839CrossRefGoogle Scholar
  4. Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research 14(5):323–328CrossRefPubMedGoogle Scholar
  5. Buyukbingol E, Suzen S, Klopman G (1994) Studies on the synthesis and structure-activity relationships of 5-(3′-indolyl)-2-thiohydantoin derivatives as aldose reductase enzyme inhibitors. Farmaco 49:443–447PubMedGoogle Scholar
  6. Chen I, Safe S, Bjeldanes L (1996) Indole-3-carbinol and diindolylmethane as aryl hydrocarbon (Ah) receptor agonists and antagonists in T47D human breast cancer cells. Biochem Pharmacol 51:1069–1076CrossRefPubMedGoogle Scholar
  7. Chyan YJ, Poeggler B, Omar RA, Chain DG, Frangione B, Ghiso J, Pappolla MA (1999) Potent neuroprotective properties against the Alzheimer β-amyloid by anendogenous melatonin-related indole structure, indole-3-propionic acid. J Biol Chem 274:21937–21942CrossRefPubMedGoogle Scholar
  8. Cuendet M, Hostettmann K, Potterat O, Dyatmiko W (1997) Iridoid Glucosides with Free Radical Scavenging Properties from Fagraea blumei. Helvetica Chimica Acta 80(4):1144–1152CrossRefGoogle Scholar
  9. El-Sabbagh OI, Baraka MM, Ibrahim SM, Pannecouque P, Andrei G, Snoeck R, Balzarini J, Rashad AA (2009) Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur J Med Chem 44:3746–3753CrossRefPubMedGoogle Scholar
  10. Faritha A, Jamal Abdul Nasser A, Parveen Ahamed A, Thajuddin N (2014) Synthesis, characterization and biological activity of certain pyrazole derivatives. J Chem Pharm Res 6:189–193Google Scholar
  11. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry 126(1):131–138Google Scholar
  12. Marcocci L, Maguire JJ, Droylefaix MT, Packer L (1994) The Nitric Oxide-Scavenging Properties of Ginkgo Biloba Extract EGb 761. Biochemical and Biophysical Research Communications 201(2):748–755CrossRefPubMedGoogle Scholar
  13. Radwan MA, Ragab EA, Sabry NM, ElShenawy SM (2007) Synthesis and biologicalevaluation of new 3-substituted indole derivatives as potential anti inflammatory and analgesic agents. Bioorg Med Chem 15:3832–3841CrossRefPubMedGoogle Scholar
  14. Raffa D, Migliara O, Maggio B, Plescia F, Cascioferro S, Cusimano MG, Tringale G, Cannizzaro C, Plescia F (2010) Pyrazolobenzotriazinones derivatives as COX inhibitors: synthesis, biological activity and molecular modelling studies. Arch Pharm Chem Life Sci 10:631–638CrossRefGoogle Scholar
  15. Ruch RJ, Cheng S, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10(6):1003–1008CrossRefPubMedGoogle Scholar
  16. Siddiqui N, Arshad MF, Ahsan W, Alam MS (2009) Thiazoles: a valuable insight into the recent advances and biological activities. Int J Pharm Sci Drug Res 1:136Google Scholar
  17. Sridhar R, Perumal PT, Etti S, Shanmugam G, Ponnuswamy MN, Prabavathy VR, Mathivanan N (2004) Design, synthesis and antimicrobial activity of 1H-pyrazole carboxylates. Bioorg Med Chem Lett 4:6035–6040CrossRefGoogle Scholar
  18. Suzen S, Buyukbingol E (1998) Evaluation of anti-HIV activity of 5- (2-phenyl-3-indolal)-2- thiohydantoin. Farmaco 53:525–527CrossRefPubMedGoogle Scholar
  19. Suzen S, Buyukbingol E (2000) Anti-cancer activity studies of indolalthiohydantoin (PIT) on certain cancer cell lines. Farmaco 55:246–248CrossRefPubMedGoogle Scholar
  20. Wu YJ, Yang BV (2011) Five-membered ring systems: with N and S (Se) atoms. In: Gordon G, John AJ (eds) Progress in heterocyclic chemistry, vol 22, ch 5.5. Elsevier, Great Britain, pp 259–307Google Scholar
  21. Zhang MZ, Chen Q, Yang GF (2015) A review on recent developments of indole containing antiviral agents. Eur J Med Chem 89:421–441CrossRefPubMedGoogle Scholar
  22. Zhang MZ, Mulholland N, Beattie D, Irwin D, Gu YC, Chen Q, Yang GF, Clough J (2013) Synthesis and antifungal activity of 3-(1,3,4-oxadiazol-5-yl)indoles and 3-(1,3,4-oxadiazol- 5-yl)methylindoles. Eur J Med Chem 63:22–32CrossRefPubMedGoogle Scholar
  23. Zhou D, Zhou P, Evrard DA, Meagher K, Webb M, Harrison BL, Huryn DM, Golembieski J, Hornby GA, Schechter LE, Smith DL, Andree TH, Mewshaw RE (2008) Studies toward the discovery of the next generation of antidepressants. Part 6: dual 5-HT1A receptor and serotonin transporter affinity within a class of arylpiperazinyl-cyclohexyl indole derivatives. Bioorg Med Chem 16:6707–6723CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Nagarjuna Ummadi
    • 1
  • Sravya Gundala
    • 1
  • Padmavathi Venkatapuram
    • 1
  • Padmaja Adivireddy
    • 1
  1. 1.Department of ChemistrySri Venkateswara UniversityTirupatiIndia

Personalised recommendations