Medicinal Chemistry Research

, Volume 26, Issue 1, pp 170–179 | Cite as

Cyclic peroxides as promising anticancer agents: in vitro cytotoxicity study of synthetic ozonides and tetraoxanes on human prostate cancer cell lines

  • Ivan A. Yaremenko
  • Mikhail A. Syroeshkin
  • Dmitri O. Levitsky
  • Fabrice FleuryEmail author
  • Alexander O. Terent’evEmail author
Original Research


Synthetic ozonides and tetraoxanes were shown to have high cytotoxicity in vitro when tested on androgen-independent prostate cancer cell lines DU145 and PC3, which is in some cases was higher than that of doxorubicin, cisplatin, etoposide, artemisinin, and artesunate. Activity of ozonide stereoisomers differs from each other. This difference in activity and absence of correlation between activity of stereoisomers and their oxidative properties allow us to suggest existence of a quite specific mechanism of cytotoxicity of these endoperoxides different from a traditional mechanism based mainly on oxidative properties of peroxides.

Graphical Abstract

Open image in new window


Ozonide Tetraoxane Peroxide Cytotoxicity Prostate Cancer 



The work on the synthesis and analysis of the organic peroxides was supported by the Russian Science Foundation (Grant № 14-23-00150) and biological experiments were funded by the Ligue Contre le Cancer (Comités 44 and 85).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

44_2016_1736_MOESM1_ESM.doc (2.5 mb)
Supplementary Information


  1. Alagbala AA, McRiner AJ, Borstnik K, Labonte T, Chang W, D’Angelo JG, Posner GH, Foster BA (2006) Biological mechanisms of action of novel C-10 non-acetal trioxane dimers in prostate cancer cell lines. J Med Chem 49:7836–7842CrossRefPubMedGoogle Scholar
  2. Azarifar D, Khosravi K, Soleimanei F (2009) Stannous chloride dihydrate: a novel and efficient catalyst for the synthesis of gem-dihydroperoxides from ketones and aldehydes. Synthesis-Stuttgart 15:2553–2556Google Scholar
  3. Balganesh T, Kundu TK, Chakraborty TK, Roy S (2014) Drug discovery research in India: current state and future prospects. Acs Med Chem Lett 5:724–726CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boissier J, Portela J, Pradines V, Cosledan F, Robert A, Meunier B (2012) Activity of trioxaquine PA1259 in mice infected by Schistosoma mansoni. Cr Chim 15:75–78CrossRefGoogle Scholar
  5. Bunge A, Hamann HJ, Liebscher J (2009) A simple, efficient and versatile synthesis of primary gem-dihydroperoxides from aldehydes and hydrogen peroxide. Tetrahedron Lett 50:524–526CrossRefGoogle Scholar
  6. Chaturvedi D, Goswami A, Saikia PP, Barua NC, Rao PG (2010) Artemisinin and its derivatives: a novel class of anti-malarial and anti-cancer agents. Chem Soc Rev 39:435–454CrossRefPubMedGoogle Scholar
  7. Chen HH, Zhou HJ, Fan X (2003) Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro. Pharmacol Res 48:231–236CrossRefPubMedGoogle Scholar
  8. Chen HH, Zhou HJ, Wang WQ, Wu GD (2004) Antimalarial dihydroartemisinin also inhibits angiogenesis. Cancer Chemoth Pharm 53:423–432CrossRefGoogle Scholar
  9. Das B, Krishnaiah M, Veeranjaneyulu B, Ravikanth B (2007) A simple and efficient synthesis of gem-dihydroperoxides from ketones using aqueous hydrogen peroxide and catalytic ceric ammonium nitrate. Tetrahedron Lett 48:6286–6289CrossRefGoogle Scholar
  10. Dembitsky VM (2008) Bioactive peroxides as potential therapeutic agents. Eur J Med Chem 43:223–251CrossRefPubMedGoogle Scholar
  11. Dembitsky VM, Gloriozova TA, Poroikov VV (2007) Natural peroxy anticancer agents. Mini Rev Med Chem 7:571–589CrossRefPubMedGoogle Scholar
  12. Denisov ET, Denisova TG, Pokidova TS (2003) Handbook of free radical initiatorsGoogle Scholar
  13. Differding E (2014) Drug discovery alliances in India-indications, targets, and new chemical entities. Chemmedchem 9:43–60CrossRefPubMedGoogle Scholar
  14. Donkers RL, Workentin MS (1998) First determination of the standard potential for the dissociative reduction of the antimalarial agent artemisinin. J Phys Chem B 102:4061–4063CrossRefGoogle Scholar
  15. Dwivedi A, Mazumder A, du Plessis L, du Preez JL, Haynes RK, du Plessis J (2015) In vitro anti-cancer effects of artemisone nano-vesicular formulations on melanoma cells. Nanomed-Nanotechnol 11:2041–2050CrossRefGoogle Scholar
  16. Efferth T (2005) Mechanistic perspectives for 1,2,4-trioxanes in anti-cancer therapy. Drug Resist Update 8:85–97CrossRefGoogle Scholar
  17. Gahlot M (2012) First India-made malaria drug. Chem Ind-London 76:6–6Google Scholar
  18. Gahlot M (2012) Indian drug approvals come under fire. Chem Ind-London 76:6–6Google Scholar
  19. Ghorai P, Dussault PH, Hu CH (2008) Synthesis of spiro-bisperoxyketals. Org Lett 10:2401–2404CrossRefPubMedGoogle Scholar
  20. Griesbeck AG, El-Idreesy TT, Hoinck LO, Lex J, Brun R (2005) Novel spiroanellated 1,2,4-trioxanes with high in vitro antimalarial activities. Bioorg Med Chem Lett 15:595–597CrossRefPubMedGoogle Scholar
  21. Griesbeck AG, Schlundt V, Neudorfl JM (2013) Functionalized polar 1,2,4-trioxanes as building blocks by singlet oxygenation of 4-hydroxy tiglic acid using the solvent deuterium isotope trick. Rsc Adv 3:7265–7270CrossRefGoogle Scholar
  22. Hao HD, Wittlin S, Wu YK (2013) Potent antimalarial 1,2,4-trioxanes through perhydrolysis of epoxides. Chem-Eur J 19:7605–7619CrossRefPubMedGoogle Scholar
  23. Ingram K, Yaremenko IA, Krylov IB, Hofer L, Terent’ev AO, Keiser J (2012) Identification of antischistosomal leads by evaluating bridged 1,2,4,5-tetraoxanes, alphaperoxides, and tricyclic monoperoxides. J Med Chem 55:8700–8711CrossRefPubMedGoogle Scholar
  24. Jefford CW (2012) Synthetic peroxides as potent antimalarials. News and views. Curr Top Med Chem 12:373–399CrossRefPubMedGoogle Scholar
  25. Keiser J, Ingram K, Vargas M, Chollet J, Wang XF, Dong YX, Vennerstrom JL (2012) In vivo activity of aryl ozonides against Schistosoma species. Antimicrob Agents Ch 56:1090–1092CrossRefGoogle Scholar
  26. Keiser J, Veneziano V, Rinaldi L, Mezzino L, Duthaler U, Cringoli G (2010) Anthelmintic activity of artesunate against Fasciola hepatica in naturally infected sheep. Res Vet Sci 88:107–110CrossRefPubMedGoogle Scholar
  27. Kim J, Park E (2002) Cytotoxic anticancer candidates from natural resources. Curr Med Chem - Anti-Cancer Agents 2:485–537CrossRefPubMedGoogle Scholar
  28. Kumar N, Sharma M, Rawat DS (2011) Medicinal chemistry perspectives of trioxanes and tetraoxanes. Curr Med Chem 18:3889–3928CrossRefPubMedGoogle Scholar
  29. Li Y, Hao HD, Zhang Q, Wu YK (2009) A broadly applicable mild method for the synthesis of gem-diperoxides from corresponding ketones or 1,3-dioxolanes. Org Lett 11:1615–1618CrossRefPubMedGoogle Scholar
  30. Mankil J, Hanjo K, Kyunghoon L, Moonsoo P (2003) Naturally occurring peroxides with biological activities. Mini-Rev Med Chem 3:159–165CrossRefGoogle Scholar
  31. Moad G, Solomon DH (2006) The chemistry of radical polymerization second fully revised edition, Elsiever, Amsterdam.Google Scholar
  32. Najjar F, Baltas M, Gorrichon L, Moreno Y, Tzedakis T, Vial H, André-Barrès C (2003) Synthesis and electrochemical studies of new antimalarial endoperoxides. Eur J Org Chem 2003:3335–3343CrossRefGoogle Scholar
  33. Najjar F, Fréville F, Desmoulin F, Gorrichon L, Baltas M, Gornitzka H, Tzedakis T, André-Barrès C (2004) Comparative electrochemical properties of fluorinated endoperoxides related to the G-factor series. Tetrahedron Lett 45:6919–6922CrossRefGoogle Scholar
  34. Nakase I, Lai H, Singh NP, Sasaki T (2008) Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. Int J Pharmaceut 354:28–33CrossRefGoogle Scholar
  35. Opsenica D, Angelovski G, Pocsfalvi G, Juranić Z, Žižak Ž, Kyle D, Milhous WK, Šolaja BA (2003a) Antimalarial and antiproliferative evaluation of Bis-Steroidal tetraoxanes. Bioorg Med Chem 11:2761–2768CrossRefPubMedGoogle Scholar
  36. Opsenica D, Kyle DE, Milhous WK, Solaja BA (2003b) Antimalarial, antimycobacterial and antiproliferative activity of phenyl substituted mixed tetraoxanes. J Serb Chem Soc 68:291–302CrossRefGoogle Scholar
  37. Opsenica DM, Solaja BA (2009) Antimalarial peroxides. J Serb Chem Soc 74:1155–1193CrossRefGoogle Scholar
  38. Opsenica I, Terzić N, Opsenica D, Angelovski G, Lehnig M, Eilbracht P, Tinant B, Juranić Z, Smith KS, Yang YS, Diaz DS, Smith PL, Milhous WK, Doković D, Šolaja BA (2006) Tetraoxane antimalarials and their reaction with Fe(II). J Med Chem 49:3790–3799CrossRefPubMedGoogle Scholar
  39. Parrish JD, Ischay MA, Lu Z, Guo S, Peters NR, Yoon TP (2012) Endoperoxide synthesis by Photocatalytic Aerobic [2+2+2] cycloadditions. Org Lett 14:1640–1643CrossRefPubMedPubMedCentralGoogle Scholar
  40. Posner GH, D’Angelo J, O’Neill PM, Mercer A (2006) Anticancer activity of artemisinin-derived trioxanes. Expert Opin Ther Pat 16:1665–1672CrossRefGoogle Scholar
  41. Posner GH, McRiner AJ, Paik I-H, Sur S, Borstnik K, Xie S, Shapiro TA, Alagbala A, Foster B (2004) Anticancer and antimalarial efficacy and safety of artemisinin-derived trioxane dimers in rodents. J Med Chem 47:1299–1301CrossRefPubMedGoogle Scholar
  42. Posner GH, Paik I-H, Sur S, McRiner AJ, Borstnik K, Xie S, Shapiro TA (2003) Orally active, antimalarial, anticancer, artemisinin-derived trioxane dimers with high stability and efficacy. J Med Chem 46:1060–1065CrossRefPubMedGoogle Scholar
  43. Ravi M, Anand D, Maurya R, Chauhan P, Naikade NK, Shukla SK, Yadav PP (2013) Synthesis of 1,2,4-trioxepanes and 1,2,4-trioxanes via H2O2-mediated reaction of tertiary carbinols. Synlett 24:173–176Google Scholar
  44. Ray P (2002) Polymer cross-linkling, in encyclopedia of polymer science and technology, Wiley.Google Scholar
  45. Reiter C, Fröhlich T, Zeino M, Marschall M, Bahsi H, Leidenberger M, Friedrich O, Kappes B, Hampel F, Efferth T, Tsogoeva SB (2015) New efficient artemisinin derived agents against human leukemia cells, human cytomegalovirus and Plasmodium falciparum: 2nd generation 1,2,4-trioxane-ferrocene hybrids. Eur J Med Chem 97:164–172CrossRefPubMedGoogle Scholar
  46. Rosenthal AS, Chen XC, Liu JO, Weso DC, Hergenrother PJ, Shapiro TA, Posner GH (2009) Malaria-infected mice are cured by a single oral dose of new dimeric trioxane sulfones which are also selectively and powerfully cytotoxic to cancer cells. J Med Chem 52:1198–1203CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rubush DM, Morges MA, Rose BJ, Thamm DH, Rovis T (2012) An asymmetric synthesis of 1,2,4-trioxane anticancer agents via desymmetrization of peroxyquinols through a bronsted acid catalysis cascade. J Am Chem Soc 134:13554–13557CrossRefPubMedPubMedCentralGoogle Scholar
  48. Slack RD, Jacobine AM, Posner GH (2012) Antimalarial peroxides: advances in drug discovery and design. Medchemcomm 3:281–297CrossRefGoogle Scholar
  49. Solaja BA, Terzic N, Pocsfalvi G, Gerena L, Tinant B, Opsenica D, Milhous WK (2002) Mixed steroidal 1,2,4,5-tetraoxanes: antimalarial and antimycobacterial activity. J Med Chem 45:3331–3336CrossRefPubMedGoogle Scholar
  50. Terent’ev AO, Kutkin AV, Troizky NA, Ogibin YN, Nikishin GI (2005) Synthesis of geminal bisperoxides by acid-catalyzed reaction of acetals and enol ethers with tert-butyl hydroperoxide. Synthesis-Stuttgart 13:2215–2219Google Scholar
  51. Terent’ev AO, Platonov MM, Kashin AS, Nikishin GI (2008a) Oxidation of cycloalkanones with hydrogen peroxide: an alternative route to the Baeyer–Villiger reaction. Synthesis of dicarboxylic acid esters. Tetrahedron 64:7944–7948CrossRefGoogle Scholar
  52. Terent’ev AO, Platonov MM, Krylov IB, Chernyshev VV, Nikishin GI (2008b) Synthesis of 1-hydroperoxy-1 ‘-alkoxyperoxides by the iodine-catalyzed reactions of geminal bishydroperoxides with acetals or enol ethers. Org Biomol Chem 6:4435–4441CrossRefPubMedGoogle Scholar
  53. Terent’ev AO, Platonov MM, Kutkin AV (2006) A new oxidation process. Transformation of gem-bishydroperoxides into esters. Cent Eur J Chem 4:207–215Google Scholar
  54. Terent’ev AO, Platonov MM, Ogibin YN, Nikishin GI (2007) Convenient synthesis of geminal bishydroperoxides by the reaction of ketones with hydrogen peroxide. Synthetic Commun 37:1281–1287CrossRefGoogle Scholar
  55. Terent’ev AO, Yaremenko IA, Vil’ VA, Moiseev IK, Kon’kov SA, Dembitsky VM, Levitsky DO, Nikishin GI (2013) Phosphomolybdic and phosphotungstic acids as efficient catalysts for the synthesis of bridged 1,2,4,5-tetraoxanes from beta-diketones and hydrogen peroxide. Org Biomol Chem 11:2613–2623CrossRefPubMedGoogle Scholar
  56. Terzić N, Opsenica D, Milić D, Tinant B, Smith KS, Milhous WK, Šolaja BA (2007) Deoxycholic acid-derived tetraoxane antimalarials and antiproliferatives. J Med Chem 50:5118–5127CrossRefPubMedGoogle Scholar
  57. van Huijsduijnen RH, Guy RK, Chibale K, Haynes RK, Peitz I, Kelter G, Phillips MA, Vennerstrom JL, Yuthavong Y, Wells TNC (2013) Anticancer properties of distinct antimalarial drug classes. PloS ONE 8:e82962Google Scholar
  58. Vennerstrom JL, Arbe-Barnes S, Brun R, Charman SA, Chiu FCK, Chollet J, Dong YX, Dorn A, Hunziker D, Matile H, McIntosh K, Padmanilayam M, Tomas JS, Scheurer C, Scorneaux B, Tang YQ, Urwyler H, Wittlin S, Charman WN (2004) Identification of an antimalarial synthetic trioxolane drug development candidate. Nature 430:900–904CrossRefPubMedGoogle Scholar
  59. Vennerstrom JL, Fu HN, Ellis WY, Ager AL, Wood JK, Andersen SL, Gerena L, Milhous WK (1992) Dispiro-1,2,4,5-tetraoxanes - a new class of antimalarial peroxides. J Med Chem 35:3023–3027CrossRefPubMedGoogle Scholar
  60. Wang XF, Dong YX, Wittlin S, Charman SA, Chiu FCK, Chollet J, Katneni K, Mannila J, Morizzi J, Ryan E, Scheurer C, Steuten J, Tomas JS, Snyder C, Vennerstrom JL (2013) Comparative antimalarial activities and ADME profiles of ozonides (1,2,4-trioxolanes) OZ277, OZ439, and their 1,2-Dioxolane, 1,2,4-Trioxane, and 1,2,4,5-Tetraoxane isosteres. J Med Chem 56:2547–2555CrossRefPubMedGoogle Scholar
  61. WHO (2010) Guidelines for the treatment of malaria, WHO, GenevaGoogle Scholar
  62. WHO (2013) Management of severe malaria, WHO, GenevaGoogle Scholar
  63. Wongsrichanalai C, Sibley CH (2013) Fighting drug-resistant Plasmodium falciparum: the challenge of artemisinin resistance. Clin Microbiol Infec 19:908–916CrossRefGoogle Scholar
  64. Workentin MS, Maran F, Wayner DDM (1995) Reduction of Di-tert-Butyl Peroxide: evidence for nonadiabatic dissociative electron transfer. J Am Chem Soc 117:2120–2121CrossRefGoogle Scholar
  65. Wu W-M, Wu Y-L (2000) Chemical and electro-chemical reduction of qinghaosu (artemisinin). J Chem Soc, Perkin Trans 1:4279–4283CrossRefGoogle Scholar
  66. Xiao SH, Tanner M, N’Goran EK, Utzinger J, Chollet J, Bergquist R, Chen MG, Zheng J (2002) Recent investigations of artemether, a novel agent for the prevention of schistosomiasis japonica, mansoni and haematobia. Acta Trop 82:175–181CrossRefPubMedGoogle Scholar
  67. Xie LJ, Zhai X, Ren LX, Meng HY, Liu C, Zhu WF, Zhao YF (2011) Design, synthesis and antitumor activity of novel artemisinin derivatives using hybrid approach. Chem Pharm Bull 59:984–990CrossRefPubMedGoogle Scholar
  68. Yadav N, Sharma C, Awasthi SK (2014) Diversification in the synthesis of antimalarial trioxane and tetraoxane analogs. Rsc Adv 4:5469–5498CrossRefGoogle Scholar
  69. Yaremenko IA, Terent’ev AO, Vil’ VA, Novikov RA, Chernyshev VV, Tafeenko VA, Levitsky DO, Fleury F, Nikishin GI (2014) Approach for the preparation of various classes of peroxides based on the reaction of triketones with H2O2: first examples of ozonide rearrangements. Chem-Eur J 20:10160–10169CrossRefPubMedGoogle Scholar
  70. Zhou HJ, Wang Z, Li A (2008) Dihydroartemisinin induces apoptosis in human leukemia cells HL60 via downregulation of transferrin receptor expression. Anti-Cancer Drug 19:247–255CrossRefGoogle Scholar
  71. Zizak Z, Juranic Z, Opsenica D, Solaja BA (2009) Mixed steroidal tetraoxanes induce apoptotic cell death in tumor cells. Invest New Drug 27:432–439CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ivan A. Yaremenko
    • 1
    • 2
  • Mikhail A. Syroeshkin
    • 1
  • Dmitri O. Levitsky
    • 2
    • 3
  • Fabrice Fleury
    • 3
    Email author
  • Alexander O. Terent’ev
    • 1
    • 2
    Email author
  1. 1.Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesMoscowRussian Federation
  2. 2.All-Russian Research Institute of Phytopathology, Bol’shie VyazemyMoscow regionRussian Federation
  3. 3.Mechanism and regulation of DNA repair team Université de Nantes, UFIP CNRS UMR 6286NantesFrance

Personalised recommendations