Skip to main content

Synthesis and in vitro evaluation of leishmanicidal activity of 7-hydroxy-4-phenylcoumarin derivatives

Abstract

Eight coumarin derivatives (28) were synthesized from 7-hydroxy-4-phenylcoumarin 1 and were evaluated for their in vitro leishmanicidal activity against promastigote and amastigote forms of Leishmania amazonensis, as well their toxicity in murine macrophages. Compounds 4 and 7 showed the most significant results against promastigote forms of L. amazonensis. They were at least three-fold more active than 1 and Compound 4 was as effective as Amphotericin B. Compound 4, a 7-O-prenylated derivative, and 7, a tetra- O -acetyl-β- D -glucopyranosyl derivative, presented IC50 values of 21.35 and 10.03 µM against promastigote and IC50 values of 58.10 and 34.93 µM, respectively against amastigote forms. Furthermore, they do not cause toxicity in mammalian or Leishmania cells in vitro. This study shows that these coumarin derivatives are potential prototypes for the development of novel drugs with leishmanicidal activity.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1

References

  1. Akendengue B, Ngou-Milama E, Laurens A, Hocquemiller R (1999) Recent advances in the fight against Leishmaniasis with natural products. Parasite 6:3–8

    CAS  Article  PubMed  Google Scholar 

  2. Arango V, Robledo S, Séon-Méniel B, Figadère B, Cardona W, Sáez J, Otálvaro F (2010) Coumarins from Galipea panamensis and their activity against Leishmania panamensis. J Nat Prod 73:1012–1014

    CAS  Article  PubMed  Google Scholar 

  3. Beattie L, Kaye PM (2011) Leishmania–host interactions: What has imaging taught us?. Cell Microbiol 13:1659–1667

    Article  PubMed  Google Scholar 

  4. Bhargava P, Singh R (2012) Developments in diagnosis and antileishmanial drugs. Interdiscip Perspect Infect Dis 2012:626838

    PubMed  PubMed Central  Google Scholar 

  5. Brenzan MA, Nakamura CV, Dias Filho BP, Ueda-Nakamura T, Young MCM, Cortez DAGC (2007) Antileishmanial activity of crude extract and coumarin from calophyllum brasiliense leaves against Leishmania amazonensis. Parasitol Res 101:715–722

    Article  PubMed  Google Scholar 

  6. Brenzan MA, Nakamura CV, Dias Filho BP, Ueda-Nakamura T, Young MCM, Corrêa AG, Alvim Júnior J, dos Santos AO, Cortez DAGC (2008) Structure–activity relationship of (-) Mammea A/BB derivatives against leishmania amazonensis. Biomed Pharmacother 62:651–658

    CAS  Article  PubMed  Google Scholar 

  7. Conchie J, Levvy GA, Marsh CA (1957) Methyl and phenyl glycosides of the common sugars. Adv Carbohydr Chem 12:157–187

    CAS  PubMed  Google Scholar 

  8. Cragg GM (1997) Natural products in drug discovery and development. J Nat Prod 60:52–60

    CAS  Article  PubMed  Google Scholar 

  9. Croft SL, Olliaro P (2011) Leishmaniasis chemotherapy-challenges and opportunities. Clin Microbiol Infect 17:1478–1483

    CAS  Article  PubMed  Google Scholar 

  10. Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in Leishmaniasis. Clin Microbiol Rev 19:111–126

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. da Cunha EFF, Sippl W, Ramalho TC, Antunes OAC, de Alencastro RB, Albuquerque MG (2009) 3D-QSAR CoMFA/CoMSIA models based on theoretical active conformers of HOE/BAY-793 analogs derived from HIV-1 protease inhibitor complexes. Eur J Med Chem 44:4344–4352

    Article  PubMed  Google Scholar 

  12. El-Ansary SL, Hussein MM, Rahman DEA, Hamed MIAL (2012) Synthesis and docking studies of furobenzopyrones of potential antimicrobial and photochemotherapeutic activities. Life Sci J 9:1114–1125

    Google Scholar 

  13. Fidalgo LM, Gille L (2011) Mitochondria and trypanosomatids: Targets and drugs. Pharmaceut Res 28:2758–2770

    CAS  Article  Google Scholar 

  14. Garazd YL, Garazd MM, Khilya VP (2005) Modified coumarins. 19. Synthesis of Neoflavone D-Glycopyranosides. Chem Nat Compd 41:663–668

    CAS  Article  Google Scholar 

  15. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–871

    Article  Google Scholar 

  16. Hotez PJ, Savioli L, Fenwick A (2012) Neglected tropical diseases of the middle East and North Africa: review of their prevalence, distribution, and opportunities for control ed. Serap Aksoy. PLoS Negl Trop Dis 6:e1475

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jorgensen WL, Duffy EM (2000) Prediction of drug solubility from Monte Carlo simulations. Bioorg Med Chem Lett 10:1155–1158

    CAS  Article  PubMed  Google Scholar 

  18. Kappagoda S, Singh U, Blackburn BG (2011) Antiparasitic therapy. Mayo Clin Proc 86:561–583

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kaye P, Scott P (2011) Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol 9:604–615

    CAS  Article  PubMed  Google Scholar 

  20. Kuarm BS, Madhav JV, Rajitha B (2012) Xanthan sulfuric acid: an efficient and recyclable solid acid catalyst for Pechmann condensation. Synth Commun 42:1770–1777

    CAS  Article  Google Scholar 

  21. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64(SUPPL):4–17

    Article  Google Scholar 

  22. Liu X, Testa B, Fahr A (2011) Lipophilicity and Its relationship with passive drug permeation. Pharmaceut Res 28:962–977

    CAS  Article  Google Scholar 

  23. Maciel-Rezende CM, de Almeida L, Costa ED’M, Pires FR, Alves KF, Viegas Junior C, Dias DF, Doriguetto AC, Marques MJ, dos Santos MH (2013) Synthesis and biological evaluation against Leishmania amazonensis of a series of Alkyl-substituted benzophenones. Bioorg Med Chem 21:3114–3119

    CAS  Article  PubMed  Google Scholar 

  24. Miertus SE, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    CAS  Article  Google Scholar 

  25. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  Article  PubMed  Google Scholar 

  26. Napolitano HB, Silva M, Ellena J, Rodrigues BDG, Almeida ALC, Vieira PC, Oliva G, Thiemann OH (2004) Aurapten, a Coumarin with growth inhibition against Leishmania major promastigotes. Braz J Med Biol Res 37:1847–1852

    CAS  Article  PubMed  Google Scholar 

  27. Ndjonka D, Rapado LN, Silber AM, Liebau E, Wrenger C (2013) Natural products as a source for treating neglected parasitic diseases. Int J Mol Sci 14:3395–3439

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Pereira IO, Marques MJ, Pavan AL, Codonho BS, Barbiéri CL, Beijo LA, Doriguetto AC, D’Martin EC, dos Santos MH (2010) Leishmanicidal activity of benzophenones and extracts from Garcinia Brasiliensis Mart. fruits. Phytomedicine 17:339–345

    CAS  Article  PubMed  Google Scholar 

  29. Rizzi E, Dallavalle S, Merlini L, Pratesi G, Zunino F (2006) Short synthesis of cytotoxic 4‐arylcoumarins. Synth Commun 36:1117–1122

    CAS  Article  Google Scholar 

  30. Seifert K, Munday J, Syeda T, Croft SL (2011) In vitro interactions between sitamaquine and Amphotericin B, sodium stibogluconate, miltefosine, paromomycin and pentamidine against Leishmania Donovani. J Antimicrob Chemother 66:850–854

    CAS  Article  PubMed  Google Scholar 

  31. Singh N, Mishra BB, Bajpai S, Singh RK, Tiwari VK (2014) Natural product based leads to fight against Leishmaniasis. Bioorg Med Chem 22:18–45

    CAS  Article  PubMed  Google Scholar 

  32. Subramanyam Raju M, Subba Rao NV (1974) Search for physiologically active compounds. Part XXIV. synthesis of 7, 8-Furano, Pyrono and 3-Methyl-4-Phenylcoumarins. Proc Indian Acad Sci Sect A 79:223–229

    Google Scholar 

  33. Tiuman TS, Brenzan MA, Ueda-Nakamura T, Dias Filho BP, Cortez DGC, Nakamura CV (2012) Intramuscular and topical treatment of cutaneous Leishmaniasis lesions in mice infected with Leishmania amazonensis using Coumarin (-) Mammea A/BB. Phytomedicine 19:1196–1199

    CAS  Article  PubMed  Google Scholar 

  34. Urzúa A, Echeverría J, Rezende MC, Wilkens M (2008) Antibacterial properties of 3 H-spiro[1-benzofuran-2,1′-cyclohexane] derivatives from Heliotropium Filifolium. Molecules 13:2385–2393

    Article  PubMed  Google Scholar 

  35. v. Pechmann H (1884) Neue Bildungsweise Der Cumarine. Synthese Des Daphnetins I. Ber Deut Chem Ges 17:929–936

    Article  Google Scholar 

  36. van Assche T, Deschacht M, da Luz RAI, Maes L, Cos P (2011) Leishmania-macrophage interactions: Insights into the redox biology. Free Radic Bio Med 51:337–351

    Article  Google Scholar 

  37. van Griensven J, Diro E (2012) Visceral leishmaniasis. Infect Dis Clin N Am 26:309–322

    Article  Google Scholar 

  38. Vieira PC, Mafezoli J, Pupo MT, Fernandes JB, da Silva MFGF, de Albuquerque S, Oliva G, Pavão F (2001) Strategies for the isolation and identification of trypanocidal compounds from the rutales. Pure Appl Chem 73:617–622

    CAS  Article  Google Scholar 

  39. Yalkowsky SH (1999) Solubility and solubilization in aqueous media, 1st ed. American Chemical Society, Washington, DC

    Google Scholar 

  40. Zweckmair T, Becker M, Ahn K, Hettegger H, Kosma P, Rosenaua T, Potthast A (2014) A novel method to analyze the degree of acetylation in biopolymers. J Chromatogr A 1372:212–220

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Rede Mineira de Química (RQ-MG) (CEX-RED-00010-14), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Financiadora de Estudos e Projetos (FINEP), Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Claudinei A. Silva or Marcelo H. dos Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosa, I.A., de Almeida, L., Alves, K.F. et al. Synthesis and in vitro evaluation of leishmanicidal activity of 7-hydroxy-4-phenylcoumarin derivatives. Med Chem Res 26, 131–139 (2017). https://doi.org/10.1007/s00044-016-1729-1

Download citation

Keywords

  • Coumarin derivatives
  • Leishmaniasis
  • Leishmania amazonensis