Skip to main content

Advertisement

Log in

Molecular docking and simulation studies to give insight of surfactin amyloid interaction for destabilizing Alzheimer’s Aβ42 protofibrils

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is a neurodegenerative disorder. Aggregation of amyloid β-peptide (Aβ42) into fibrils is a key pathological process associated with Alzheimer’s disease. In this study, effect of surfactin against amyloid β-peptide was studied by using computational approaches. In the molecular docking, surfactin interacts with A chain of amyloid fibril and forms the hydrogen bonds with Ala 21 and Asp 23 with total energy of −3.28 kcal/mol. Surfactin interacts with an amphiphilic pore amyloid β-peptide (Aβ42); binding of surfactin to amyloid fiber shows the decrease in salt bridge length (between Asp 23 and Lys 28) from 11.5 to 9.0 Å; and this may lead to displace the water molecules and so destabilize the amyloid β-peptide (Aβ42). 10-ns molecular dynamics simulation was performed for amyloid fibril and with surfactin amyloid fibril complex. RMSD, RMSF, Rg trajectories, and SASA plot further used to study the stability of complex and effect of surfactin. This is the novel in silico study of surfactin against the amyloid β-peptide (Aβ42) fiber responsible for Alzheimer’s disease, and these results may provide an insight role of surfactin in the drug design against Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balaji GL, Rajesh K, Priya R, Iniyavan P, Siva R, Vijayakumar V (2013) Ultrasound promoted synthesis, biological evaluation and molecular docking of novel 7-(2-chloroquinolin-4-yloxy)-4-methyl-2H-chromen-2-one derivatives. Med Chem Res 22:3185–3192

    Article  CAS  Google Scholar 

  • Berendsen HJC, van der Spoel D, Drunen RV (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  • Bolton E, Wang Y, Thiessen PA, Bryant SH (2008) Integrated platform of small molecules and biological activities. In: Chapter 12 IN annual reports in computational chemistry, vol 4. American Chemical Society, Washington, DC, USA

  • Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D’Ursi AM, Temussi PA, Picone D (2002) Solution structure of the Alzheimer amyloid beta-peptide (1–42) in an apolar microenvironment similarity with a virus fusion domain. Eur J Biochem 269(22):5642–5648

    Article  CAS  PubMed  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Biotechnol 53:495–508

    Google Scholar 

  • Devarajan S, Sharmila JS (2014) Computational studies of beta amyloid (Aβ42) with p75NTR receptor: a novel therapeutic target in Alzheimer’s disease. Adv Bioinform. doi:10.1155/2014/736378

    Google Scholar 

  • Gerben SR, Lemkul JA, Brown AM, Bevan DR (2014) Comparing atomistic molecular mechanics force fields for a difficult target: a case study on the Alzheimer’s amyloid β-peptide. J Biomol Struct Dyn 32(11):1817–1832

    Article  CAS  PubMed  Google Scholar 

  • GhattyVenkataKrishna PK, Mostofian B (2013) Dynamics of water in the amphiphilic pore of amyloid b fibrils. Chem Phys Lett 582:1–5

    Article  CAS  Google Scholar 

  • Hamaguchi T, Ono K, Yamada M (2006) Anti-amyloidogenic therapies: strategies for prevention and treatment of Alzheimer’s disease. Cell Mol Life Sci 63(13):1538–1552

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Huang X, Cao M, Wang Y (2008) Micellization of surfactin and its effect on the aggregate conformation of amyloid (1–40). J Phys Chem B 112:15195–15201

    Article  CAS  PubMed  Google Scholar 

  • Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Rodríguez M et al (2015) Virtual and in vitro screens reveal a potential pharmacophore that avoids the fibrillization of Aβ1–42. PLoS ONE 10(7):e0130263. doi:10.1371/journal.pone.0130263

    Article  PubMed  PubMed Central  Google Scholar 

  • Jellinger KA, Bancher C (1998) Neuropathology of Alzheimer’s disease: a critical update. J Neural Transm Suppl 54:77–95

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Oira S, Matsui K, Kanatomo S, Hase T (1974) Antitumor activity of Bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311. Chem Pharm Bull 22:938–944

    Article  CAS  PubMed  Google Scholar 

  • Khopade A, Ren B, Liu Xiang-Yang, Mahadik K, Zhang L, Kokare C (2012) Production and characterization of biosurfactant from marine Streptomyces species B3. J Colloid Interface Sci 367:311–318

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Kim JY, Kim SH et al (2007) Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett 581:865–871

    Article  CAS  PubMed  Google Scholar 

  • Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  PubMed  Google Scholar 

  • Kroemer RT (2007) Structure-based drug design: docking and scoring. Curr Protein Pept Sci 8:312–328

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Pillay V, Choonara YE, Modi G, Naidoo D, du Toit LC (2011) In Silico theoretical molecular modeling for Alzheimer’s disease: the nicotine–curcumin paradigm in neuroprotection and neurotherapy. Int J Mol Sci 12(1):694–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemkul JA, Bevan DR (2010) Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics. J Phys Chem 114:1652–1660

    Article  CAS  Google Scholar 

  • Lemkul JA, Bevan DR (2012) The role of molecular simulations in the development of inhibitors of amyloid β-peptide aggregation for the treatment of Alzheimer’s disease. ACS Chem Neurosci 3(11):845–856

    Article  Google Scholar 

  • Lemkul JA et al (2010) Destabilizing Alzheimer’s Aβ42 protofibrils with morin: mechanistic insights from molecular dynamics simulations. Biochemistry 49:3935–3946

    Article  CAS  PubMed  Google Scholar 

  • Li L-J, Nicholas RJ, Chen C-Y, Darton RC, Baker SC (2005) Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone. Nanotechnology 16:202–205

    Article  Google Scholar 

  • Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  • Lobanov MY, Bogatyreva NS, Galzitskaya OV (2008) Radius of gyration as an indicator of protein structure compactness. Molekulyarnaya Biologiy 42:701–706

    Google Scholar 

  • Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-β (1–42) fibrils. Proc Natl Acad Sci USA 102(48):17342–17347

    Article  PubMed  PubMed Central  Google Scholar 

  • Medina-Franco JL, López-Vallejo F, Kuck D, Lyko F (2011) Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers 15:1–12

    Article  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput Chem 16:2785–2791

    Article  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactant. Environ Pollut 133:183–198

    Article  CAS  PubMed  Google Scholar 

  • O’Boyle Banck NM, James M, Morley CA et al (2011) Open Babel: an open chemical toolbox. J Cheminf 3:33

    Article  Google Scholar 

  • Park SY, Kim JH, Lee SJ, Kim Y (2013) Surfactin exhibits neuroprotective effects by inhibiting amyloid β-mediated microglial activation. Neurotoxicology 38:115–123

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  CAS  PubMed  Google Scholar 

  • Schüttelkopf AW, Van Aalten DMF (2004) PRODRG-a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D 60:1355–1363

    Article  PubMed  Google Scholar 

  • Seydlová G, Svobodová J (2008) Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med 3(2):123–133

    Google Scholar 

  • Shaligram NS, Singhal RS (2010) Surfactin–a review on biosynthesis, fermentation, purification and applications. Food Technol Biotechnol 48(2):119–134

    CAS  Google Scholar 

  • Soreghan B, Kosmoski J, Glabe C (1994) Surfactant properties of Alzheimer’s A beta peptides and mechanism of amyloid aggregation. J Biol Chem 269:28551–28554

    CAS  PubMed  Google Scholar 

  • Woods SJ, MacKenzie L, Maleeff B, Hurle MR, Wetzel R (1996) Selective inhibition of A beta fibril formation. J Biol Chem 271:4086–4092

    Article  Google Scholar 

  • Zhang YW, Thompson R, Zhang H, Xu H (2011) APP processing in Alzheimer’s disease. Mol Brain 7:3–4

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Ministry of Human Resource and Development (MHRD), India for financial supports and to the School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India for providing laboratory and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mira Debnath.

Ethics declarations

Conflict of interest

The authors report no conflict of interests.

Additional information

Ashish Verma and Akhil Kumar have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Kumar, A. & Debnath, M. Molecular docking and simulation studies to give insight of surfactin amyloid interaction for destabilizing Alzheimer’s Aβ42 protofibrils. Med Chem Res 25, 1616–1622 (2016). https://doi.org/10.1007/s00044-016-1594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1594-y

Keywords

Navigation