Skip to main content

Advertisement

Log in

Synthesis, characterization and evaluation of antiproliferative activity of diisopropylphenyl esters of fatty acids from selected oils

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The present investigation describes the synthesis, characterization and evaluation of antiproliferative activity of novel diisopropylphenol (propofol) conjugates of fatty acids. The fatty acids were obtained from oils of Jatropha curcas (jatropha) and Pongamia glabra (karanja) containing unsaturated-rich fatty acids, Sterculia foetida (containing cyclopropene-rich fatty acids), Samia cynthia (eri pupae, containing polyunsaturated-rich fatty acid, 18:3) and Cocos nucifera (coconut, containing medium-chain saturated-rich fatty acids). The synthesized conjugates viz. propofol-jatropha mixed fatty acid conjugates (2,4P-JTA and 2,6P-JTA), propofol-karanja mixed fatty acid conjugates (2,4P-KTA and 2,6P-KTA), propofol-sterculia foetida mixed fatty acid conjugates (2,4P-STA and 2,6P-STA), propofol-eri pupal mixed fatty acid conjugates (2,4P-EFA and 2,6-EFA) and propofol-coconut mixed fatty acid conjugates (2,4P-CCFA and 2,6P-CCFA) were obtained by esterification of the fatty acid mixture to propofol isomers (2,4-diisopropylphenol and 2,6-diisopropylphenol). The prepared derivatives were characterized by FT-IR, NMR (1H, 13C) and GC–MS and were tested for in vitro antiproliferative studies on A549, MDA-MB-231, HeLa, Mia-Pa–Ca and HePG2 cancer cell lines. All the synthesized propofol-mixed fatty acid conjugates showed good to moderate specific growth inhibition of cancer cells on studied cell lines. The results suggest that all the novel propofol-mixed fatty acid conjugates possess antiproliferative properties that reduce the proliferation of cancer cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aarts L, Vander HR, Dekker I, Jong JD, Langemeijer H, Bast A (1995) The widely used anesthetic agent propofol can replace alpha-tocopherol as an antioxidant. FEBS Lett 357:83–85

    Article  CAS  PubMed  Google Scholar 

  • Azrad M, Turgeon C, Demark-Wahnefried W (2013) Current evidence linking polyunsaturated fatty acids with cancer risk and progression. Front Oncol 3(224):1–12

    Google Scholar 

  • Begin ME, Ells G, Horrobin DF (1988) Polyunsaturated fatty acid-induced cytotoxicity against tumor cells and its relationship to lipid peroxidation. J Natl Cancer Inst 80:188–194

    Article  CAS  PubMed  Google Scholar 

  • Bindhu Ch, Reddy JRC, Rao BVSK, Ravinder T, Chakrabarti PP, Karuna MSL, Prasad RBN (2012) Preparation and Evaluation of Biodiesel from Sterculia foetida Seed Oil. J Am Oil Chem Soc 89:891–896

    Article  CAS  Google Scholar 

  • Bougnoux P (1999) n-3 Polyunsaturated fatty acids and cancer. Curr Opin Clin Nutr Metab Care 2:121–126

    Article  CAS  PubMed  Google Scholar 

  • Coetzee JF, Glen JB, Wium CA, Boshoff L (1995) Pharmacokinetic model selection for target controlled infusions of propofol. Assessment of three parameter sets. Anesthesiology 82:1328–1345

    Article  CAS  PubMed  Google Scholar 

  • Conklin KA (2002) Dietary polyunsaturated fatty acids: impact on cancer chemotherapy and radiation. Altern Med Rev 7:4–21

    PubMed  Google Scholar 

  • Covington H (1998) Use of propofol for sedation in the ICU. Crit Care Nurse 18:34–39

    CAS  PubMed  Google Scholar 

  • Das UN (1991) Tumoricidal action of cis-unsaturated fatty acids and their relationship to free radicals and lipid peroxidation. Cancer Lett 56:235–243

    Article  CAS  PubMed  Google Scholar 

  • Eriksson O, Pollesello P, Saris NE (1992) Inhibition of lipid peroxidation in isolated rat liver mitochondria by the general anaesthetic propofol. Biochem Pharmacol 44:391–393

    Article  CAS  PubMed  Google Scholar 

  • Fauser JK, Matthews GM, Cummins AG, Howarth GS (2013) Induction of apoptosis by the medium-chain length fatty acid lauric acid in colon cancer cells due to induction of oxidative stress. Chemtherapy 59:214–224

    Article  CAS  Google Scholar 

  • Fraser DA, Thoen J, Rustan AC, Forre O, Kjeldsen-Kragh J (1999) Changes in plasma free fatty acid concentrations in rheumatoid arthritis patients during fasting and their effects upon T-lymphocyte proliferation. Rheumatology (Oxford) 38:948–952

    Article  CAS  Google Scholar 

  • Harvey KA, Xu Z, Whitley P, Davisson VJ, Siddiqui RA (2010) Characterization of anticancer properties of 2,6-diisopropylphenol-docosahexaenoate and analogues in breast cancer cells. Bioorg Med Chem 18:1866–1874

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RA, Sangster K, Arends MJ (1998) Apoptotic death of pancreatic cancer cells induced by polyunsaturated fatty acids varies with double bond number and involves an oxidative mechanism. J Pathol 185:61–70

    Article  CAS  PubMed  Google Scholar 

  • Kaki SS, Ravinder T, Ashwini B, Rao BVSK, Prasad RBN (2014) Enzymatic modification of phosphatidylcholine with n-3 PUFA from silkworm oil fatty acids. Grasas Aceites 65(2):e021

    Article  Google Scholar 

  • Kamal A, Shaik AB, Polepalli S, Kumar GB, Reddy VS, Mahesh R, Garimella S, Jain N (2015) Synthesis of arylpyrazole linked benzimidazole conjugates as potential microtubule disruptors. Bioorg Med Chem 23:1082–1095

    Article  CAS  PubMed  Google Scholar 

  • Kanaya N, Gable B, Murray PA, Damron DS (2003) Propofol increases phosphorylation of troponin I and myosin light chain 2 via protein kinase C activation in cardiomyocytes. Anesthesiology 98:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Alam M, Tufail S, Mustafa J, Owais M (2011) Synthesis and characterization of novel PUFA esters exhibiting potential anticancer activities: an in vitro study. Eur J Med Chem 46:4878–4886

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Husain A, Jabeen M, Mustafa J, Owais M (2012) Synthesis and characterization of novel n-9 fatty acid conjugates possessing antineoplastic properties. Lipids 47:973–986

    Article  CAS  PubMed  Google Scholar 

  • Klein S, Wolfe RR (1992) Carbohydrate restriction regulates the adaptive response to fasting. Am J Physiol 262:E631–E636

    CAS  PubMed  Google Scholar 

  • Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A (2004) Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 79:935–945

    CAS  PubMed  Google Scholar 

  • Lemaitre RN, King IB, Sotoodehnia N, Rea TD, Raghunathan TE, Rice KM, Lumley TS, Knopp RH, Cobb LA, Copass MK, Siscovick DS (2009) Red blood cell membrane alpha-linolenic acid and the risk of sudden cardiac arrest. Metabolism 58:534–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mammoto T, Mukai M, Mammoto A, Yamanaka Y, Hayashi Y, Mashimo T, Kishi Y, Nakamura H (2002) Intravenous anesthetic, propofol inhibits invasion of cancer cells. Cancer Lett 184:165–170

    Article  CAS  PubMed  Google Scholar 

  • Menendez JA, Ropero S, Lupu R, Colomer R (2004) Omega-6 polyunsaturated fatty acid gamma-linolenic acid (18:3n-6) enhances docetaxel (Taxotere) cytotoxicity in human breast carcinoma cells: relationship to lipid peroxidation and HER-2/neu expression. Oncol Rep 11:1241–1252

    CAS  PubMed  Google Scholar 

  • Mohini Y, Prasad RBN, Karuna MSL, Ganesh Kumar C, Poornima M, Sujitha P (2013) Synthesis of fatty acid Schiff base esters as potential antimicrobial and chemotherapeutic agents. Med Chem Res 22:4360–4366

    Article  CAS  Google Scholar 

  • Murphy PG, Myers DS, Davies MJ, Webster NR, Jones JG (1992) The antioxidant potential of propofol (2,6-diisopropylphenol). Br J Anaesth 68:613–618

    Article  CAS  PubMed  Google Scholar 

  • Rajaram S (2014) Health benefits of plant-derived α-linolenic acid. Am J Clin Nutr 100:443S–448S

    Article  CAS  PubMed  Google Scholar 

  • Satyavani T, Mohini Y, Karuna MSL, Prasad RBN, Ganesh Kumar C, Poornima M, Sujitha P (2014) Synthesis and biological evaluation of fatty imidazolines. Med Chem Res 23:3617–3623

    Article  CAS  Google Scholar 

  • Siddiqui RA, Zerouga M, Wu M, Castillo A, Harvey K, Zaloga GP, Stillwell W (2005) Anticancer properties of propofol-docosahexaenoate and propofol-eicosapentaenoate on breast cancer cells. Breast Cancer Res 7:645–654

    Article  Google Scholar 

  • Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood) 233:674–688

    Article  CAS  Google Scholar 

  • Tronstad KJ, Berge K, Berge RK, Bruserud Ø, Oystein B (2003) Modified fatty acids and their possible therapeutic targets in malignant diseases. Expert Opin Ther Targets 7:663–677

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya M, Asada A, Maeda K, Ueda Y, Sato EF, Shindo M, Inoue M (2001) Propofol versus midazolam regarding their antioxidant activities. Am J Respir Crit Care Med 163:26–31

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

One of the authors SR gratefully acknowledges the Department of Biotechnology, New Delhi, for the financial assistance under sponsored project and Director, CSIR-IICT, for providing the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayalakshmi Penumarthy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1643 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasa, S.R., Kaki, S.S., Rao, B.B. et al. Synthesis, characterization and evaluation of antiproliferative activity of diisopropylphenyl esters of fatty acids from selected oils. Med Chem Res 25, 1299–1307 (2016). https://doi.org/10.1007/s00044-016-1564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1564-4

Keywords

Navigation