Skip to main content
Log in

Ferulic acid amide derivatives as anticancer and antioxidant agents: synthesis, thermal, biological and computational studies

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The design and microwave-assisted synthesis of four series (IIIa–IIIo, Va–Vg, VIIa–VIIg and IXa–IXe) of mono and bis-amide derivatives of ferulic acid have been achieved under solvent-free conditions and, subsequently characterized by spectroscopic techniques. During thermal analysis, all the compounds were found stable up to 100 °C and decomposed through single step at higher temperature. The derivatives were screened for their in vitro cytotoxicity and antioxidant activity, respectively and observed that compound Vb was most active against breast (MCF-7; IC50 = 07.49 µM and MDA-MB-231; IC50 = 07.28 µM), Vd against lung (A549; IC50 = 07.11 µM) and liver (HepG2; IC50 = 08.32 µM), and Ve against cervical (HeLa; IC50 = 07.14 µM) cancer cell lines, while compounds IIIf, IIIl, IIIo, VIIe and IXa–IXe were found to exhibit the strong antioxidant activity with respect to their parent molecule. Previous reports for the biological applications of ferulic acid amides also confirmed the importance of work presented here. The 3D-QSAR studies for anticancer and antioxidant activities were also performed by using CoMFA, and the corresponding contour maps of electrostatic and steric fields have been computed. Statistical analysis between experimental and CoMFA-predicted data for pIC50 have been accomplished by curve fitting analysis which showed the significant correlation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Basoglu S, Yolal M, Demirci S, Demirbas N, Bektas H, Karaoglu SA (2013) Design, synthesis and antimicrobial activities of some azole derivatives. Acta Pol Pharm 70(2):229–236

    CAS  PubMed  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Article  CAS  Google Scholar 

  • Chung SY, Champagne ET (2011) Ferulic acid enhances IgE binding to peanut allergens in Western blots. Food Chem 124(4):1639–1642

    Article  CAS  Google Scholar 

  • Clifford MN (1990) Chlorogenic acids and other cinnamates–nature, occurrence and dietary burden. J Sci Food Agric 79(3):362–372

    Article  Google Scholar 

  • Cramer RD, Bunce JD, Patterson DE, Frank IE (1988a) Cross-validation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct Act Relat 7(1):18–25

    Article  Google Scholar 

  • Cramer RD, Patterson DE, Bunce JD (1988b) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110(18):5959–5967

    Article  CAS  PubMed  Google Scholar 

  • Ferhat M, Ghorab H, Laggoune S, Ghannadi A, Sajjadi SE, Touzani R, Kabouche A, Kabouche Z (2014) Composition and antioxidant activity of the essential oil of Thymus dreatensis from Algeria. Chem Nat Comp 50(4):747–749

    Article  CAS  Google Scholar 

  • Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahed 36(22):3219–3228

    Article  CAS  Google Scholar 

  • Goel N, Kumar N (2014) Study of supramolecular frameworks having aliphatic dicarboxylic acids, N, N′-bis(salicyl)ethylenediamine and N, N′-bis(salicyl)butylenediamine. J Mol Struct 1071:60–70

    Article  CAS  Google Scholar 

  • Goel N, Singh UP (2013) Syntheses, structural, computational and thermal analysis of acid-base complexes of picric acid with N-heterocyclic bases. J Phys Chem A 117(40):10428–10437

    Article  CAS  PubMed  Google Scholar 

  • Herrmann K (1989) Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28(4):315–347

    Article  CAS  PubMed  Google Scholar 

  • Hosoda A, Ozaki Y, Kashiwada A, Mutoh M, Wakabayashi K, Mizuno K, Nomura E, Taniguchi H (2002) Syntheses of ferulic acid derivatives and their suppressive effects on cyclooxygenase-2 promoter activity. Bioorg Med Chem 10(4):1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Huang GY, Cui C, Wang ZP, Li YQ, Xiong LX, Wang LZ, Yu SJ, Li ZM, Zhao WG (2013) Synthesis and characteristics of (Hydrogenated) ferulic acid derivatives as potential antiviral agents with insecticidal activity. Chem Cent J 7(33):1–12

    Article  Google Scholar 

  • Kiran T, Alekhya C, Lokesh B, Latha A, Prasad Y, Mounika T (2015) Synthesis, characterization and biological screening of ferulic acid derivatives. J Can Ther 6:917–931

    Article  Google Scholar 

  • Kumar N, Bhalla TC (2011) In silico analysis of amino acid sequences in relation to specificity and physiochemical properties of some aliphatic amidases and kynurenine formamidases. J Bioinform Seq Anal 3(6):116–123

    CAS  Google Scholar 

  • Kumar N, Garg A (2014) Structural optimization and docking studies of anatoxin-a: a potent neurotoxin. Afr J Biotechnol 13(30):3092–3100

    Article  Google Scholar 

  • Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93

    Article  CAS  Google Scholar 

  • Kumar N, Pruthi V (2015) Structural elucidation and molecular docking of ferulic acid from Parthenium hysterophorus possessing COX-2 inhibition activity. 3. Biotech 5(4):541–551

    Google Scholar 

  • Kumar S, Kumar N, Roy P, Sondhi SM (2014) Efficient synthesis of heterocyclic compounds derived from 2,6-dioxopiperazine derivatives and their evaluation for anti-inflammatory and anticancer activities. Med Chem Res 23(9):3953–3969

    Article  CAS  Google Scholar 

  • Kumar N, Pruthi V, Goel N (2015) Structural, thermal and quantum chemical studies of p-coumaric and caffeic acids. J Mol Struct 1085:242–248

    Article  CAS  Google Scholar 

  • Lever SD, Papadaki M (2004) Study of condition-dependent decomposition reactions: part I. The thermal behaviour and decomposition of 2-nitrobenzoyl chloride. J Hazard Mater 115(1–3):91–100

    Article  CAS  PubMed  Google Scholar 

  • Li W, Li N, Tang Y, Li B, Liu L, Zhang X, Fu H, Duan JA (2012a) Biological activity evaluation and structure–activity relationships analysis of ferulic acid and caffeic acid derivatives for anticancer. Bioorg Med Chem Lett 22(19):6085–6088

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Cheng XL, Liu J, Lin RC, Wang GL, Du SS, Liu ZL (2012b) Phenolic Compounds and Antioxidant Activities of Liriope muscari. Molecules 17(2):1797–1808

    Article  CAS  PubMed  Google Scholar 

  • Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52(4):673–751

    CAS  PubMed  Google Scholar 

  • Mori H, Kawabata K, Yoshimi N, Tanaka T, Murakami T, Okada T, Murai H (1999) Chemopreventive effects of ferulic acid on oral and rice germ on large bowel carcinogenesis. Anticancer Res 19(5A):3775–3783

    CAS  PubMed  Google Scholar 

  • Mori T, Koyama N, Guillot-Sestier MV, Tan J, Town T (2013) Ferulic acid Is a nutraceutical β-secretase modulator that improves behavioral impairment and Alzheimer-like pathology in transgenic mice. PLoS One 8:1–15

    Google Scholar 

  • Narang AS, Desai DS, Lu YRI (eds) (2009) Pharmaceutical perspectives of cancer therapeutics. Springer. doi:10.1007/978-1-4419-0131-6_2

  • Ou S, Kwok KC (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 84(11):1261–1269

    Article  CAS  Google Scholar 

  • Paiva LB, Goldbeck R, Santos WD, Squina FM (2013) Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Braz J Pharm Sci 49(3):395–411

    Article  Google Scholar 

  • Parkesh R, Childs-Disney JL, Nakamori M, Kumar A, Wang E, Wang T, Hoskins J, Tran T, Housman D, Thornton CA, Disney MD (2012) Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database and chemical similarity searching. J Am Chem Soc 134(10):4731–4742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piazzon A, Vrhovsek U, Masuero D, Mattivi F, Mandoj F, Nardini M (2012) Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulphate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. J Agric Food Chem 60(50):12312–12323

    Article  CAS  PubMed  Google Scholar 

  • Rosazza JPN, Huang Z, Dostal L, Volm T, Rousseau B (1995) Review: biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J Ind Microbiol 15(6):457–471

    Article  CAS  PubMed  Google Scholar 

  • Sajjadi SE, Naderi GH, Ziaii R, Zolfaghari B (2004) The antioxidant activity of polyphenolic fraction of Thymus daenensis Celak. Iran J Pharm Res 3(2):80–81

    Google Scholar 

  • Shamsipur M, Pourmortazavi SM, Beigi AKM, Heydari R, Khatibi M (2013) Thermal stability and decomposition kinetic studies of acyclovir and zidovudine drug compounds. AAPS Pharm Sci Tech 14(1):287–293

    Article  CAS  Google Scholar 

  • Shang YJ, Jin XL, Shang XL, Tang JJ, Liu GY, Dai F, Qian YP, Fan GJ, Liu Q, Zhou B (2010) Antioxidant capacity of curcumin-directed analogues: structure-activity relationship and influence of microenvironment. Food Chem 119:1435–1442

    Article  CAS  Google Scholar 

  • Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113(4):1202–1205

    Article  CAS  Google Scholar 

  • Sondhi SM, Kumar S, Kumar N, Roy P (2012) Synthesis anti-inflammatory and anticancer activity evaluation of some pyrazole and oxadiazole derivatives. Med Chem Res 21(10):3043–3052

    Article  CAS  Google Scholar 

  • Sultana R (2012) Ferulic acid ethyl ester as a potential therapy in neurodegenerative disorders. Biochim Biophys Acta 1822(5):748–752

    Article  CAS  PubMed  Google Scholar 

  • Tamm LK, Abildgaard F, Arora A, Blad H, Bushweller JH (2003) Structure, dynamics and function of the outer membrane protein A (OmpA) and influenza hemagglutinin fusion domain in detergent micelles by solution NMR. FEBS Lett 555(1):139–143

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Shahidi F (2011) Chemoenzymatic synthesis of phytosteryl ferulates and evaluation of their antioxidant activity. J Agric Food Chem 59(23):12375–12383

    Article  CAS  PubMed  Google Scholar 

  • Teresa LS, Filipa SC, Maria PMM, Rita C, Tiago S, Jorge G, Nuno M, Fernanda B, Fernanda R, Elisiário TS, Jon H, Paulo JO (2011) Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells. Chem Res Toxicol 24(5):763–774

    Article  Google Scholar 

  • Toshihiro A, Ken Y, Miho Y, Motohiko U, Yumiko K, Naoto S, Koichi A (2000) Triterpene alcohol and sterol ferulates from rice bran and their anti-inflammatory effects. J Agric Food Chem 48(6):2313–2319

    Article  Google Scholar 

  • Vashisth P, Kumar N, Sharma M, Pruthi V (2015) Biomedical applications of ferulic acid encapsulated electrospun nanofibers. Biotechnol Rep 8:36–44

    Article  Google Scholar 

  • Wang F, Lu W, Zhang T, Dong J, Gao H, Li P, Wang S, Zhang J (2013) Development of novel ferulic acid derivatives as potent histone deacetylase inhibitors. Bioorg Med Chem 21(22):6973–6980

    Article  CAS  PubMed  Google Scholar 

  • Wiegand C, Heinze T, Hipler UC (2009) Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 17(4):511–521

    Article  PubMed  Google Scholar 

  • Wold S (1991) Validation of QSAR’s. Quant Struct Act Relat 10:191–193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Naresh Kumar gratefully acknowledges CSIR, New Delhi, India, for financial assistance, Indian Institute of Technology Roorkee and NIPER Mohali for instrumentation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Kumar.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Kumar, S., Abbat, S. et al. Ferulic acid amide derivatives as anticancer and antioxidant agents: synthesis, thermal, biological and computational studies. Med Chem Res 25, 1175–1192 (2016). https://doi.org/10.1007/s00044-016-1562-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1562-6

Keywords

Navigation