Skip to main content
Log in

Synthesis, antibacterial and antifungal activities of naphthoquinone derivatives: a structure–activity relationship study

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The synthesis of 1,4-naphthoquinone derivatives is of great interest since these compounds exhibit strong activity as antimalarial, antibacterial, antifungal and anticancer agents. A series of 50 naphthoquinone derivatives was synthesized and evaluated for antibacterial and antifungal activity against Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, Candida krusei, Candida parapsilosis and Cryptococcus neoformans using the broth microdilution method. The Candida species were the most susceptible microorganisms. Halogen derivatives of 1,4-naphthoquinone presented strong activity, e.g., 2-bromo-5-hydroxy-1,4-naphthoquinone, which exhibited inhibition at an MIC of 16 µg/mL in S. aureus, and 2-chloro-5,8-dihydroxy-1,4-naphthoquinone, with an MIC of 2 µg/mL in C. krusei. These compounds showed higher activity against fungi, but the antibacterial activities were very low. The study of structure–activity relationships is very important in the search for new antimicrobial drugs due to the limited therapeutic arsenal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Al-Mussawi AA (2010) Isolation and identification of shikonin from Arnebia Decumbens L. and its antibacterial activity. J Appl Sci Res 6:1452–1456

    CAS  Google Scholar 

  • Ambrogi V, Artini D, De CI, Castellino S, Dradi E, Logemann W, Meinardi G, Di SM, Tosolini G, Vecchi E (1970) Studies on the antibacterial and antifungal properties of 1, 4-naphthoquinones. Br J Pharmacol 40:871–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekaert A, Andrieux J, Plat M (1986) New methods of synthesizing naphthopurporin (2,5,8-trihydroxy-1,4-naphthoquinone). Bull Soc Chim Fr:314–316

  • Bhattacharya A, Jindal B, Singh P, Datta A, Panda D (2013) Plumbagin inhibits cytokinesis in Bacillus subtilis by inhibiting FtsZ assembly—a mechanistic study of its antibacterial activity. FEBS J 280:4585–4599

    Article  CAS  PubMed  Google Scholar 

  • Bloomer JL, Zheng W (1998) Using NBS as a mild bromination reagent for polyalkoxyaromatic systems. Synth Commun 28:2087–2095

    Article  CAS  Google Scholar 

  • CLSI (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts, approved standard, CLSI Document M27-A3. Clinical Laboratory Standards Institute, Wayne, PA

  • Dallaeker F, Jacobs J, Coerver W (1983) Über Naphtho[1.8-de]-1.3-dioxiiie. Zeitschrift für Naturforschung B 38:1000–1007

    Google Scholar 

  • Glazunov VP, Berdyshev DV (2012) Assignments and forms of stretching vibrations of 1,4-naphthoquinone carbonyl groups. J Appl Spectrosc 79:675–686

    Article  CAS  Google Scholar 

  • Greco G, Panzella L, Pezzella A, Napolitano A, d’Ischia M (2010) Reaction of dihydrolipoic acid with juglone and related naphthoquinones: unmasking of a spirocyclic 1,3-dithiane intermediate en route to naphtho[1,4]dithiepines. Tetrahedron 66:3912–3916

    Article  CAS  Google Scholar 

  • Guerrero-Vásquez GA, Andrade CKZ, Molinillo JMG, Macías FA (2013) Practical first total synthesis of the potent phytotoxic (±)-naphthotectone, isolated from tectona grandis. Eur J Org Chem 2013:6175–6180

    Article  Google Scholar 

  • Guerrero-Vásquez GA, Chinchilla N, Molinillo JMG, Macías FA (2014) Synthesis of bioactive speciosins G and P from Hexagonia speciosa. J Nat Prod 77:2029–2036

    Article  PubMed  Google Scholar 

  • Holmes HL, Currie DJ, Maltman JR, Silver RF, Lough CE, Leahy GJ (1964) Evidence for the mode of chemical action of 1,4-naphthoquinones in bacteriostasis. Chemotherapy 9:241–247

    Article  CAS  PubMed  Google Scholar 

  • Horowska B, Mazerska Z, Ledochowski A, Cristalli G, Franchetti P, Martelli S (1988) Synthesis and cytotoxic activity of aziridinyl-1,4-naphthoquinones and naphthazarins. Eur J Med Chem 23:91–96

    Article  CAS  Google Scholar 

  • Hughes LM, Lanteri CA, O’Neil MT, Johnson JD, Gribble GW, Trumpower BL (2011) Design of anti-parasitic and anti-fungal hydroxy-naphthoquinones that are less susceptible to drug resistance. Mol Biochem Parasitol 177:12–19

    Article  CAS  PubMed  Google Scholar 

  • Huot R, Brassard P (1974) Friedel-crafts condensations with maleic anhydrides. III. The synthesis of polyhydroxylated naphthoquinones. Can J Chem 52:838–842

    Article  CAS  Google Scholar 

  • Kawasaki M, Matsuda F, Terashima S (1988) Synthetic studies on nogalamycin congeners [2]1,2 chiral synthesis of the cdef-ring system of nogalamycin. Tetrahedron 44:5713–5725

    Article  CAS  Google Scholar 

  • Koyama J (2010) Anti-infective quinone derivatives of recent patents. Front Anti Infect Drug Discov 1:294–322

    CAS  Google Scholar 

  • Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616

    Article  CAS  Google Scholar 

  • Lewis JR, Paul J (1977) A convenient synthesis of naphthazarin and naphthopurpurin. Zeitschrift für Naturforschung B 32b:1473–1475

    CAS  Google Scholar 

  • Lim M-Y, Jeon J-H, Jeong E-Y, Lee C-H, Lee H-S (2006) Antimicrobial activity of 5-hydroxy-1,4-naphthoquinone isolated from Caesalpinia sappan toward intestinal bacteria. Food Chem 100:1254–1258

    Article  Google Scholar 

  • Mathew R, Kruthiventi AK, Prasad JV, Kumar SP, Srinu G, Chatterji D (2010) Inhibition of mycobacterial growth by plumbagin derivatives. Chem Biol Drug Des 76:34–42

    Article  CAS  PubMed  Google Scholar 

  • PA W (2009) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved standard. CLSI document. M07-A8. Clinical Laboratory Standards Institute

  • Pawar AB, Bamane SR, Jadhav KD, Sarawadekar RG (2012) Spectral, thermal, X-ray diffraction and antimicrobial studies of some bivalent metal chelates of Juglone. J Curr Chem Pharm Sci 2:277–290

    CAS  Google Scholar 

  • Pawar O, Patekar A, Khan A, Kathawate L, Haram S, Markad G, Puranik V, Salunke-Gawali S (2014) Molecular structures and biological evaluation of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone derivatives as potent antifungal agents. J Mol Struct 1059:68–74

    Article  CAS  Google Scholar 

  • Pelageev DN, Dyshlovoy SA, Pokhilo ND, Denisenko VA, Borisova KL, Keller-von Amsberg G, Bokemeyer C, Fedorov SN, Honecker F, Anufriev VP (2014) Quinone-carbohydrate nonglucoside conjugates as a new type of cytotoxic agents: synthesis and determination of in vitro activity. Eur J Med Chem 77:139–144

    Article  CAS  PubMed  Google Scholar 

  • Pinto AV, de Castro SL (2009) The trypanocidal activity of naphthoquinones: a review. Molecules 14:4570–4590

    Article  PubMed  Google Scholar 

  • Plyta ZF, Li T, Papageorgiou VP, Mellidis AS, Assimopoulou AN, Pitsinos EN, Couladouros EA (1998) Inhibition of topoisomerase I by naphthoquinone derivatives. Bioorg Med Chem Lett 8:3385–3390

    Article  CAS  PubMed  Google Scholar 

  • Premalatha B, Pradeep FS, Pradeep BV, Palaniswamy M (2012) Production and characterization of naphthoquinone pigment from Fusarium moniliforme MTCC6985. World J Pharm Res 1:1126–1142

    CAS  Google Scholar 

  • Riffel A, Medina LF, Stefani V, Santos RC, Bizani D, Brandelli A (2002) In vitro antimicrobial activity of a new series of 1,4-naphthoquinones. Braz J Med Biol Res 35:811–818

    Article  CAS  PubMed  Google Scholar 

  • Rohnert U, Heiser I, Nemec S, Baker R, Osswald W, Elstner EF (1998) Diaphorase-dedicated oxygen activation and uncoupling of mitochondrial electron transport by naphthazarin toxins produced by Fusarium solani. J Plant Physiol 153:684–692

    Article  CAS  Google Scholar 

  • Sakunphueak A, Panichayupakaranant P (2012) Comparison of antimicrobial activities of naphthoquinones from Impatiens balsamina. Nat Prod Res 26:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Shen C-C, Syu W Jr, Li S-Y, Lin C-H, Lee G-H, Sun C-M (2002) Antimicrobial activities of naphthazarins from arnebia euchroma. J Nat Prod 65:1857–1862

    Article  CAS  PubMed  Google Scholar 

  • Sreelatha T, Kandhasamy S, Dinesh R, Shruthy S, Shweta S, Mukesh D, Karunagaran D, Balaji R, Mathivanan N, Perumal PT (2014a) Synthesis and SAR study of novel anticancer and antimicrobial naphthoquinone amide derivatives. Bioorg Med Chem Lett 24:3647–3651

    Article  CAS  PubMed  Google Scholar 

  • Sreelatha T, Kandhasamy S, Dinesh R, Shruthy S, Shweta S, Mukesh D, Karunagaran D, Balaji R, Mathivanan N, Perumal PT (2014b) Synthesis and SAR study of novel anticancer and antimicrobial naphthoquinone amide derivatives. Bioorg Med Chem Lett 24:3647–3651

    Article  CAS  PubMed  Google Scholar 

  • Takeya T, Kajiyama M, Nakamura C, Tobinaga S (1999) Total synthesis of (±)-Plumbazeylanone, a naphthoquinone trimer from plumbago zeylanica. Chem Pharm Bull 47:209–219

    Article  CAS  Google Scholar 

  • Tandon VK, Chhor RB, Singh RV, Rai S, Yadav DB (2004) Design, synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antifungal and anticancer agents. Bioorg Med Chem Lett 14:1079–1083

    Article  CAS  PubMed  Google Scholar 

  • Tandon VK, Yadav DB, Singh RV, Chaturvedi AK, Shukla PK (2005) Synthesis and biological evaluation of novel (L)-α-amino acid methyl ester, heteroalkyl, and aryl substituted 1,4-naphthoquinone derivatives as antifungal and antibacterial agents. Bioorg Med Chem Lett 15:5324–5328

    Article  CAS  PubMed  Google Scholar 

  • Tandon VK, Maurya HK, Mishra NN, Shukla PK (2009) Design, synthesis and biological evaluation of novel nitrogen and sulfur containing hetero-1,4-naphthoquinones as potent antifungal and antibacterial agents. Eur J Med Chem 44:3130–3137

    Article  CAS  PubMed  Google Scholar 

  • Tekin V, Muftuler FZB, Guldu OK, Kilcar AY, Medine EI, Yavuz M, Unak P, Timur S (2015) Biological affinity evaluation of Lawsonia inermis origin Lawsone compound and its radioiodinated form via in vitro methods. J Radioanal Nucl Chem 303:701–708

    Article  CAS  Google Scholar 

  • Terada A, Tanoue Y, Hatada A, Sakamoto H (1987) Synthesis of shikalkin (±Shikonin) and Related compounds. Bull Chem Soc Jpn 60:205–213

    Article  CAS  Google Scholar 

  • Tran T, Saheba E, Arcerio AV, Chavez V, Q-y L, Martinez LE, Primm TP (2004a) Quinones as antimycobacterial agents. Bioorg Med Chem 12:4809–4813

    Article  CAS  PubMed  Google Scholar 

  • Tran T, Saheba E, Arcerio AV, Chavez V, Li QY, Martinez LE, Primm TP (2004b) Quinones as antimycobacterial agents. Bioorg Med Chem 12:4809–4813

    Article  CAS  PubMed  Google Scholar 

  • Tran N-C, Le M-T, Nguyen D-N, Tran T-D (2009) Synthesis and biological evaluation of halogen-substituted 1,4-naphthoquinones as potent antifungal agents. Molecular Diversity Preservation International, pp tran1/1–tran1/7

  • Ueno Y, Ogasawara A, Watanabe T, Mikami T, Matsumoto T (2008) Analysis of ROS production mechanism in Candida albicans treated with menadione. J Tohoku Pharm Univ 55:57–61

    CAS  Google Scholar 

  • Valderrama JA, Leiva H, Rodriguez JA, Theoduloz C, Schmeda-Hirshmann G (2008) Studies on quinones. Part 43: synthesis and cytotoxic evaluation of polyoxyethylene-containing 1,4-naphthoquinones. Bioorg Med Chem 16:3687–3693

    Article  CAS  PubMed  Google Scholar 

  • Verma RP, Hansch C (2004) Elucidation of structure-activity relationships for 2- or 6-substituted-5,8-dimethoxy-1,4-naphthoquinones. Bioorg Med Chem 12:5997–6009

    Article  CAS  PubMed  Google Scholar 

  • Yadav JS, Bezawada J, Yan S, Tyagi RD, Surampalli RY (2012) Candida krusei: biotechnological potentials and concerns about its safety. Can J Microbiol 58:937–952

    Article  CAS  PubMed  Google Scholar 

  • Yakubovskaya AY, Pokhilo ND, Anufriev VF, Anisimov MM (2009a) Synthesis and antimicrobial and antifungal activities of compounds of the naphthazarin series. Pharm Chem J 43:396–398

    Article  CAS  Google Scholar 

  • Yakubovskaya AY, Pokhilo ND, Anufriev VF, Anisimov MM (2009b) Synthesis and antimicrobial and antifungal activities of compounds of the naphthazarin series. Pharm Chem J 43:396–398

    Article  CAS  Google Scholar 

  • Yang D, Li S, Li S, Li J, Sun M, Jin Y (2009) Effect of juglone from Juglans mandshurica bark on the activity of wood decay fungi. For Prod J 59:79–82

    CAS  Google Scholar 

  • Yang RF, Huang PP, Qiu TQ (2013) Ultrasound-enhanced subcritical water extraction of naphthoquinone pigments from purple gromwell (Lithospermum erythrorhizon) to higher yield and bioactivity. Food Sci Biotechnol 22:671–676

    Article  CAS  Google Scholar 

  • Zhou W, Zhang X, Xiao L, Ding J, Liu Q-H, Li S-S (2011) Semi-synthesis and antitumor activity of 6-isomers of 5, 8-O-dimethyl acylshikonin derivatives. Eur J Med Chem 46:3420–3427

    Article  CAS  PubMed  Google Scholar 

  • Zhou D-Y, Zhu B-W, Wang X-D, Qin L, Li D-M, Miao L, Murata Y (2012) Stability of polyhydroxylated 1,4-naphthoquinone pigment recovered from spines of sea urchin Strongylocentrotus nudus. Int J Food Sci Technol 47:1479–1486

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work described was supported by the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía (Project P10-AGR5822).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuel A. Rodríguez-Iglesias or José M. G. Molinillo.

Ethics declarations

Conflict of interest

The authors report no conflict of interest connected to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Calvo, J.M., Barbero, G.R., Guerrero-Vásquez, G. et al. Synthesis, antibacterial and antifungal activities of naphthoquinone derivatives: a structure–activity relationship study. Med Chem Res 25, 1274–1285 (2016). https://doi.org/10.1007/s00044-016-1550-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1550-x

Keywords

Navigation