Medicinal Chemistry Research

, Volume 25, Issue 5, pp 870–878 | Cite as

A new class of phenylhydrazinylidene derivatives as inhibitors of Staphylococcus aureus biofilm formation

  • Stella Cascioferro
  • Benedetta Maggio
  • Demetrio Raffa
  • Maria Valeria Raimondi
  • Maria Grazia Cusimano
  • Domenico Schillaci
  • Barbara Manachini
  • Ainars Leonchiks
  • Giuseppe Daidone
Original Research

Abstract

In the struggle against the emergence of the antibiotic resistance, new molecules targeting biofilm formation could be useful as adjuvant of conventional antibiotics. This study focused on a new class of 2-phenylhydrazinylidene derivatives as antivirulence agents. The compound 12e showed interesting activities against biofilm formation of all tested Staphylococcus aureus strains with IC50 ranging from 1.7 to 43 µM; compounds 12f and 13a resulted strong inhibitors of S. aureus ATCC 6538 and ATCC 29213 biofilm formation with IC50 of 0.9 and 0.8 µM, respectively. A preliminary study on the mechanism of action was carried on evaluating the inhibition of sortase A transpeptidase. Compound 12e resulted not to be toxic at 1 mg/ml by using an in vivo model (the wax moth larva model, Galleriamellonella).

Keywords

Phenylhydrazinylidene derivatives Antibiofilm agents Sortase A Antivirulence agents Bacterial adhesion 

References

  1. Baraldi PG, Simoni D, Moroder F et al (1982) Synthesis of 2-(5′-substituted isoxazol-3′-yl)-4-oxo-3-thiazolidinylalkanoic acids. J Heterocycl Chem 19:557–560. doi:10.1002/jhet.5570190321 CrossRefGoogle Scholar
  2. Cascioferro S (2014) The future of antibiotic: from the magic bullet to the smart bullet. J Microb Biochem Technol. doi:10.4172/1948-5948.1000e118 Google Scholar
  3. Cascioferro S, Cusimano MG, Schillaci D (2014a) Antiadhesion agents against gram-positive pathogens. Future Microbiol 9:1209–1220. doi:10.2217/fmb.14.56 CrossRefPubMedGoogle Scholar
  4. Cascioferro S, Totsika M, Schillaci D (2014b) Sortase A: an ideal target for anti-virulence drug development. Microb Pathog 77C:105–112. doi:10.1016/j.micpath.2014.10.007 CrossRefGoogle Scholar
  5. Cascioferro S, Raffa D, Maggio B et al (2015a) Sortase A inhibitors: recent advances and future perspectives. J Med Chem. doi:10.1021/acs.jmedchem.5b00779 PubMedGoogle Scholar
  6. Cascioferro S, Raimondi MV, Cusimano MG et al (2015b) Pharmaceutical potential of synthetic and natural pyrrolomycins. Mol Basel Switz 20:21658–21671. doi:10.3390/molecules201219797 Google Scholar
  7. Chuang Y-Y, Huang Y-C (2013) Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Asia. Lancet Infect Dis 13:698–708. doi:10.1016/S1473-3099(13)70136-1 CrossRefPubMedGoogle Scholar
  8. Desbois AP, Coote PJ (2011) Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents. J Antimicrob Chemother 66:1785–1790. doi:10.1093/jac/dkr198 CrossRefPubMedGoogle Scholar
  9. Diekema DJ, Pfaller MA, Schmitz FJ et al (2001) Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis Off Publ Infect Dis Soc Am 32(Suppl 2):S114–S132. doi:10.1086/320184 CrossRefGoogle Scholar
  10. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193. doi:10.1128/CMR.15.2.167-193.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Frankel BA, Bentley M, Kruger RG, McCafferty DG (2004) Vinyl sulfones: inhibitors of SrtA, a transpeptidase required for cell wall protein anchoring and virulence in Staphylococcus aureus. J Am Chem Soc 126:3404–3405. doi:10.1021/ja0390294 CrossRefPubMedGoogle Scholar
  12. Huang X, Aulabaugh A, Ding W et al (2003) Kinetic mechanism of Staphylococcus aureus sortase SrtA. Biochemistry (Mosc) 42:11307–11315. doi:10.1021/bi034391g CrossRefGoogle Scholar
  13. Jackson PL, Hanson CD, Farrell AK et al (2012) Enaminones 12. An explanation of anticonvulsant activity and toxicity per Linus Pauling’s clathrate hypothesis. Eur J Med Chem 51:42–51. doi:10.1016/j.ejmech.2012.02.003 CrossRefPubMedGoogle Scholar
  14. Kamal A, Shaik AB, Polepalli S et al (2014) Pyrazole-oxadiazole conjugates: synthesis, antiproliferative activity and inhibition of tubulin polymerization. Org Biomol Chem 12:7993–8007. doi:10.1039/c4ob01152j CrossRefPubMedGoogle Scholar
  15. Maggio B, Raffa D, Raimondi MV et al (2016) Discovery of a new class of sortase A transpeptidase inhibitors to tackle gram-positive pathogens: 2-(2-Phenylhydrazinylidene)alkanoic acids and related derivatives. Molecules 21(2):241. doi: 10.3390/molecules21020241 CrossRefGoogle Scholar
  16. Maresso AW, Wu R, Kern JW et al (2007) Activation of inhibitors by sortase triggers irreversible modification of the active site. J Biol Chem 282:23129–23139. doi:10.1074/jbc.M701857200 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Raimondi MV, Maggio B, Raffa D et al (2012) Synthesis and anti-staphylococcal activity of new 4-diazopyrazole derivatives. Eur J Med Chem 58:64–71. doi:10.1016/j.ejmech.2012.09.041 CrossRefPubMedGoogle Scholar
  18. Schaffer AC, Solinga RM, Cocchiaro J et al (2006) Immunization with Staphylococcus aureus clumping factor B, a major determinant in nasal carriage, reduces nasal colonization in a murine model. Infect Immun 74:2145–2153. doi:10.1128/IAI.74.4.2145-2153.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Schillaci D, Maggio B, Raffa D et al (2008) 4-Diazopyrazole derivatives as potential new antibiofilm agents. Chemotherapy 54:456–462. doi:10.1159/000159271 CrossRefPubMedGoogle Scholar
  20. Schillaci D, Petruso S, Raimondi MV et al (2010) Pyrrolomycins as potential anti-staphylococcal biofilms agents. Biofouling 26:433–438. doi:10.1080/08927011003718673 CrossRefPubMedGoogle Scholar
  21. Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160:629–633. doi:10.1083/jcb.200210140 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Takagi M, Nakamura T, Matsuda I et al (2008) Pyrazoles and use thereof as drugs. WO 2008062739 (A1)Google Scholar
  23. Talbot GH, Bradley J, Edwards JE et al (2006) Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin Infect Dis Off Publ Infect Dis Soc Am 42:657–668. doi:10.1086/499819 CrossRefGoogle Scholar
  24. Tenover FC, Goering RV (2009) Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J Antimicrob Chemother 64:441–446. doi:10.1093/jac/dkp241 CrossRefPubMedGoogle Scholar
  25. Ton-That H, Liu G, Mazmanian SK et al (1999) Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc Natl Acad Sci USA 96:12424–12429CrossRefPubMedPubMedCentralGoogle Scholar
  26. Yang L, Liu Y, Wu H et al (2012) Combating biofilms. FEMS Immunol Med Microbiol 65:146–157. doi:10.1111/j.1574-695X.2011.00858.x CrossRefPubMedGoogle Scholar
  27. Zhulenkovs D, Jaudzems K, Zajakina A, Leonchiks A (2014a) Enzymatic activity of circular sortase A under denaturing conditions: an advanced tool for protein ligation. Biochem Eng J 82:200–209. doi:10.1016/j.bej.2013.11.018 CrossRefGoogle Scholar
  28. Zhulenkovs D, Rudevica Z, Jaudzems K et al (2014b) Discovery and structure-activity relationship studies of irreversible benzisothiazolinone-based inhibitors against Staphylococcus aureus sortase A transpeptidase. Bioorg Med Chem 22:5988–6003. doi:10.1016/j.bmc.2014.09.011 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Stella Cascioferro
    • 1
    • 2
  • Benedetta Maggio
    • 1
  • Demetrio Raffa
    • 1
  • Maria Valeria Raimondi
    • 1
  • Maria Grazia Cusimano
    • 1
  • Domenico Schillaci
    • 1
  • Barbara Manachini
    • 1
  • Ainars Leonchiks
    • 3
  • Giuseppe Daidone
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche - Sezione di Chimica e Tecnologie FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
  2. 2.IEMESTIstituto Euromediterraneo di Scienza e TecnologiaPalermoItaly
  3. 3.Latvian Biomedical Research and Study CentreRigaLatvia

Personalised recommendations