Skip to main content
Log in

Pharmacophore and docking-based hierarchical virtual screening for the designing of aldose reductase inhibitors: synthesis and biological evaluation

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A set of 54 studied flavonoid inhibitors of aldose reductase (ALR2) enzyme has been utilized for pharmacophore modeling and 3D-QSAR analysis using “PHASE” program of Schrödinger software. The generated pharmacophore model (AADRR.1109) was challenged to screen “PHASE” database to identify new ALR2 inhibitors. The retrieved hits were employed for docking analysis and pharmacokinetic parameter calculation to obtain orally active molecules. To predict the activity of final retrieved hits, 3D-QSAR model was developed, and the best model was selected on the basis of various statistical parameters (R 2train 0.719; Q 2test 0.647 and SD 0.663). Totally five screened molecules which showed better enhanced predicted activity were synthesized and evaluated for in vitro ALR2 inhibitory activity. All tested molecules showed ALR2 inhibitory activity (IC50) below 40 µM. Additionally, the free radical scavenging potential of synthesized molecules was also determined which played a useful role to control the progression of diabetic complications. All molecules showed good antioxidant potential, thus the designed molecules, in future, could be explored to ameliorate the development of diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggarwal TS, Bhardwaj TR, Kumar M (2010) 3D-QSAR studies on a series of 5-arylidine-2, 4-thiazolidinediones as aldose reductase inhibitors: a self-organizing molecular field analysis approach. Med Chem 6:30–36. doi:10.2174/157340610791208718

    Article  PubMed  Google Scholar 

  • Ahluwalia VK, Aggarwal R (2004) Comprehensive practical organic chemistry: preparation and quantitative analysis, chapter: Algar–Flynn–Oyamada oxidation. Universities Press (India) Private Limited, pp 23–24

  • Alexiou P, Pegklidou K, Chatzopoulou M, Nicolaou I, Demopoulos V (2009) Aldose reductase enzyme and its implication to major health problems of the 21st century. Curr Med Chem 16:734–752. doi:10.1517/17425255.2014.916277

    Article  CAS  PubMed  Google Scholar 

  • Araki E, Nishikawa T (2010) Oxidative stress: a cause and therapeutic target of diabetic complications. J Diabetes Investig 1:90–96. doi:10.1111/j.2040-1124.2010.00013.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baker W (1933) Molecular rearrangement of some o-acyloxyacetophenones and the mechanism of the production of 3-acylchromones. J Chem Soc 10:1381–1389. doi:10.1039/JR9330001381

    Article  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820. doi:10.1038/414813a

    Article  CAS  PubMed  Google Scholar 

  • Caballero J (2010) 3D-QSAR (CoMFA and CoMSIA) and pharmacophore (GALAHAD) studies on the differential inhibition of aldose reductase by flavonoid compounds. J Mol Gr Model 29:363–371. doi:10.1016/j.jmgm.2010.08.005

    Article  CAS  Google Scholar 

  • Dunlop M (2000) Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int 58:S3–S12. doi:10.1046/j.1523-1755.2000.07702.x

    Article  Google Scholar 

  • El-Kabbani O, Darmanin C, Schneider TR, Hazemann I, Ruiz F, Oka M, Joachimiak A, Schulze-Briese C, Tomizaki T, Mitschler A, Podjarny A (2004) Ultrahigh resolution drug design. II. Atomic resolution structures of human aldose reductase holoenzyme complexed with Fidarestat and Minalrestat: implications for the binding of cyclic imide inhibitors. Proteins 55:805–813. doi:10.1002/prot.20001

    Article  CAS  PubMed  Google Scholar 

  • El-Kabbani O, Carbone V, Darmanin C, Oka M, Mitschler A, Podjarny A, Schulze-Briese C, Chung RP (2005) Structure of aldehyde reductase holoenzyme in complex with the potent aldose reductase inhibitor fidarestat: implications for inhibitor binding and selectivity. J Med Chem 48:536–5542. doi:10.1021/jm050412o

    Article  Google Scholar 

  • Engerman RL (1989) Pathogenesis of diabetic retinopathy. Diabetes 38:1203–1206. doi:10.2337/diab.38.10.1203

    Article  CAS  PubMed  Google Scholar 

  • Fernandez M, Caballero J, Helguera AM, Castro EA, Gonzalez MP (2005) Quantitative structure-activity relationship to predict differential inhibition of aldose reductase by flavonoid compounds. Bioorg Med Chem 13:3269–3277. doi:10.1016/j.bmc.2005.02.038

    Article  CAS  PubMed  Google Scholar 

  • Friesner RA, Banks J, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shaw DE, Shelley M, Perry JK, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. doi:10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  • Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070. doi:10.1161/CIRCRESAHA.110.223545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giannoukakis N (2014) Evaluation of ranirestat for the treatment of diabetic neuropathy. Expert Opin Drug Metab Toxicol 10:1051–1059

    Article  CAS  PubMed  Google Scholar 

  • Glide, version 5.8 (2012) Schrödinger, LLC, New York

  • Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Gr Model 20:269–276. doi:10.1016/S1093-3263(01)00123-1

    Article  CAS  Google Scholar 

  • Gonzalez AM, Sochor M, Hothersall JS, McLean P (1986) Effect of aldose reductase inhibitor (sorbinil) on integration of polyol pathway, pentose phosphate pathway, and glycolytic route in diabetic rat lens. Diabetes 35:1200–1205. doi:10.2337/diab.35.11.1200

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Singh N, Jaggi AS (2013) Evaluation of in vitro aldose reductase inhibitory potential of alkaloidal fractions of Piper nigrum, Murraya koenigii, Argemone mexicana, and Nelumbo nucifera. J Basic Clin Physiol Pharmacol 24:1–11. doi:10.1515/jbcpp-2013-0071

    Article  Google Scholar 

  • Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202. doi:10.1016/S0163-7258(02)00298-X

    Article  CAS  PubMed  Google Scholar 

  • Hayman S, Kinoshita JH (1965) Isolation and properties of lens aldose reductase. J Biol Chem 240:877–882

    CAS  PubMed  Google Scholar 

  • Henry DR, Miller MA, Güner OF (1997) American Chemical Society, 213th National Meeting, April 13–17: Paper COMP–39

  • Howard EI, Sanishvili R, Cachau RE, Mitschler A, Chevrier B, Barth P, Lamour V, Van Zandt M, Sibley E, Bon C, Moras D, Schneider TR, Joachimiak A, Podjarny A (2004) Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66 A. Proteins 55:792–804. doi:10.1002/prot.20015

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Chen G, Chau RM (2006) A neural networks-based drug discovery approach and its application for designing aldose reductase inhibitors. J Mol Gr Model 24:244–253. doi:10.1016/j.jmgm.2005.09.002

    Article  CAS  Google Scholar 

  • Kador PF (1998) The role of aldose reductase in the development of diabetic complications. Med Res Rev 8:325–352

    Article  Google Scholar 

  • Kador PF, Lee JW, Fujisawa S, Blessing K, Lou MF (2000) Relative importance of aldose reductase versus nonenzymatic glycosylation on sugar cataract formation in diabetic rats. J Ocul Pharmacol Ther 16:149–160

    Article  CAS  PubMed  Google Scholar 

  • Kaur M, Bahia MS, Silakari O (2012) Exploring the role of water molecules for docking and receptor guided 3D-QSAR analysis of naphthyridine derivatives as spleen tyrosine kinase (Syk) inhibitors. J Chem Inf Model 52:2619–2630. doi:10.1021/ci300227f

    Article  CAS  PubMed  Google Scholar 

  • Kaur M, Kumari A, Bahia MS, Silakari O (2013) Designing of new multi-targeted inhibitors of spleen tyrosine kinase (Syk) and zeta-associated protein of 70 kDa (ZAP-70) using hierarchical virtual screening protocol. J Mol Gr Model 39:165–175. doi:10.1016/j.jmgm.2012.11.011

    Article  CAS  Google Scholar 

  • Kinoshita JH (1990) A thirty year journey in the polyol pathway. Exp Eye Res 50:567–573. doi:10.1016/0014-4835(90)90096-D

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita JH, Varma SD, Fukui NH (1976) Aldose reductase in diabetes. Jpn J Ophthalmol 20:399–410

    CAS  Google Scholar 

  • Kohler EP, Chadwell HM (1941) Benzalacetophenone. Org Synth 2:1. doi:10.15227/orgsyn.002.0001

    Google Scholar 

  • Kurzwernhart A, Kandioller W, Bartel C, Bachler S, Trondl R, Mühlgassner G, Jakupec MA, Arion VB, Marko D, Keppler BK, Hartinger CG (2012) Targeting the DNA-topoisomerase complex in a double-strike approach with a topoisomerase inhibiting moiety and covalent DNA binder. Chem Commun 48:4839–4841. doi:10.1039/C2CC31040F

    Article  CAS  Google Scholar 

  • Ligprep, version 2.5 (2012) Schrödinger, LLC, New York

  • Liu H, Liu S, Qin L, Mo L (2009) CoMFA and CoMSIA analysis of 2,4-thiazolidinediones derivatives as aldose reductase inhibitors. J Mol Model 15(7):837–845. doi:10.1007/s00894-008-0439-0

    Article  CAS  PubMed  Google Scholar 

  • Maestro, version 9.3 (2012) Schrödinger, LLC, New York

  • Mahal HS, Venkataraman KJ (1934) Synthetical experiments in the chromone group. Part XIV. The action of sodamide on 1-acyloxy-2-acetonaphthones. J Chem Soc. doi:10.1039/JR9340001767

    Google Scholar 

  • Menezes MJ, Manjreker S, Pai V, Patre RE, Tilwe SG (2009) A facile microwave assisted synthesis of flavones. Indian J Chem 48:1311–1314

    Google Scholar 

  • Mercader AG, Duchowicz PR, Fernandez FM, Castro EA, Bennardi DO, Autino JC, Romanelli GP (2008) QSAR prediction of inhibition of aldose reductase for flavonoids. Bioorg Med Chem 16:7470–7476. doi:10.1016/j.bmc.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  • Moon YJ, Wang X, Morris ME (2006) Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol Vitro 20:187–210. doi:10.1016/j.tiv.2005.06.048

    Article  CAS  Google Scholar 

  • Nagarajan K, Zauhar R, Welsh WJ (2005) Enrichment of ligands for the serotonin receptor using the Shape Signatures approach. J Chem Inf Model 45:49–57. doi:10.1021/ci049746x

    Article  CAS  PubMed  Google Scholar 

  • Okawa M, Kinjo J, Nohara T, Ono M (2001) DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol Pharm Bull 24:1202–1205. doi:10.1248/bpb.24.1202

    Article  CAS  PubMed  Google Scholar 

  • Okuda J, Miwa I, Inagaki K, Horie T, Nakayama M (1982) Inhibition of aldose reductases from rat and bovine lenses by flavonoids. Biochem Pharmacol 31:3807–3822. doi:10.1016/0006-2952(82)90297-0

    Article  CAS  PubMed  Google Scholar 

  • Patra JC, Singh O (2009) Artificial neural networks-based approach to design ARIs using QSAR for diabetes mellitus. J Comput Chem 30:2494–2508. doi:10.1002/jcc.21240

    Article  CAS  PubMed  Google Scholar 

  • PHASE, version 3.4 (2012) Schrödinger, LLC, New York

  • Prabhakar YS, Gupta MK, Roy N, Venkateswarlu Y (2006) A high dimensional QSAR study on the aldose reductase inhibitory activity of some flavones: topological descriptors in modeling the activity. J Chem Inf Model 46:86–92. doi:10.1021/ci050060u

    Article  CAS  PubMed  Google Scholar 

  • QikProp, version 3.5 (2012) Schrödinger, LLC, New York

  • Rice-Evans C (2001) Flavonoid antioxidants. Curr Med Chem 8:797–807. doi:10.2174/0929867013373011

    Article  CAS  PubMed  Google Scholar 

  • Richard DC, Jeffrey DB, David EP, Ildiko EF (1988) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. QSAR 7:18–25. doi:10.1002/qsar.19880070105

    Google Scholar 

  • Robinson WG, Kador PF, Kinoshita JH (1983) Retinal capillaries: basement membrane thickening by galactosemia prevented with aldose reductase inhibitor. Science 221:1177–1179. doi:10.1126/science.6612330

    Article  Google Scholar 

  • Ruiz F, Hazemann I, Mitschler A, Joachimiak A, Schneider T, Karplus M, Podjarny A (2004) The crystallographic structure of the aldose reductase-IDD552 complex shows direct proton donation from tyrosine 48. Acta Crystallogr D Biol Crystallogr 60:1347–1354. doi:10.1107/S09074449040113

    Article  PubMed  Google Scholar 

  • Ruiz F, Hazemann I, Darmanin C, Mitschler A, Van Zandt M, Joachimiak A, El-Kabbani O, Podjarny A (2015) The crystallographic structure of Aldose Reductase IDD393 complex confirms Leu300 as a specificity determinant. doi:10.2210/pdb2pzn/pdb

  • Scott JA, King GL (2004) Oxidative stress and antioxidant treatment in diabetes. Ann N Y Acad Sci 1031:204–213. doi:10.1196/annals.1331.020

    Article  CAS  PubMed  Google Scholar 

  • Silakari O, Chand S, Bahia MS (2012) Structural basis of amino pyrimidine derivatives for inhibitory activity of PKC-θ: 3D-QSAR and molecular docking studies. Mol Inf 31:659–668. doi:10.1002/minf.201100123

    Article  CAS  Google Scholar 

  • Srivastava SK, Ramana KV, Bhatnagar A (2005) Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev 26:380–392. doi:10.1210/er.2004-0028

    Article  CAS  PubMed  Google Scholar 

  • Steuber H (2011) An old NSAID revisited: crystal structure of aldose reductase in complex with sulindac at 1.0 Å supports a novel mechanism for its anticancer and antiproliferative effects. Chem Med Chem 6:2155–2157. doi:10.1002/cmdc.201100374

    Article  CAS  PubMed  Google Scholar 

  • Steuber H, Zentgraf M, Podjarny A, Heine A, Klebe G (2006) High-resolution crystal structure of aldose reductase complexed with the novel sulfonyl-pyridazinone inhibitor exhibiting an alternative active site anchoring group. J Mol Biol 356:45–56. doi:10.1016/j.jmb.2005.10.067

    Article  CAS  PubMed  Google Scholar 

  • Szwergold BS, Kappler F, Brown TR (1990) Identification of fructose 3-phosphate in the lens of diabetic rats. Science 247:451–454. doi:10.1126/science.2300805

    Article  CAS  PubMed  Google Scholar 

  • Van Zandt MC, Jones ML, Gunn DE, Geraci LS, Jones JH, Sawicki DR, Sredy J, Jacot JL, Dicioccio AT, Petrova T, Mitschler A, Podjarny AD (2005) Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J Med Chem 48:3141–3152. doi:10.1021/jm0492094

    Article  PubMed  Google Scholar 

  • Varma SD (1986) Inhibition of aldose reductase by flavonoids: possible attenuation of diabetic complications. In: Cody V, Middleton E, Harborne JB (eds) Plant flavonoids in biology and medicine: biochemical, pharmacological, and structure-activity relationships. Alan Liss R, New York, pp 343–358

    Google Scholar 

  • Varma SD, Kinoshita JH (1976) Inhibition of lens aldose reductase by flavonoids—their possible role in the prevention of diabetic cataracts. Biochem Pharmacol 25:2505–2513. doi:10.1016/0006-2952(76)90457-3

    Article  CAS  PubMed  Google Scholar 

  • Varma SD, Mikuni I, Kinoshita JH (1975) Flavonoids as inhibitors of lens aldose reductase. Science 188:1215–1216. doi:10.1126/science.1145193

    Article  CAS  PubMed  Google Scholar 

  • WellsKnecht KJ, Brinkmann E, Wells-Knecht MC, Litchfield JE, Ahmed MU, Reddy S, Zyzak DV, Thorpe SR, Baynes JW (1996) New biomarkers of Maillard reaction damage to proteins. Nephrol Dial Transpl 11:41–47. doi:10.1093/ndt/11.supp5.41

    Article  CAS  Google Scholar 

  • Wild S, Roglic G, Green A, Sicree R, King H (2007) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053. doi:10.2337/diacare.27.5.1047

    Article  Google Scholar 

  • Xie W, Wang W, Su H, Xing D, Pan Y, Du L (2006) Effect of ethanolic extracts of Ananas comosus L. leaves on insulin sensitivity in rats and HepG2. Biochem Physiol C Toxicol Pharmacol 143:429–435. doi:10.1016/j.cbpc.2006.04.002

    Article  Google Scholar 

  • Young RJ, Ewing DJ, Clarke BF (1983) A controlled trial of sorbinil, an aldose reductase inhibitor, in chronic painful diabetic neuropathy. Diabetes 32:938–942. doi:10.2337/diab.32.10.938

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Golbraikh A, Oloff S, Kohn H, Tropsha A (2006) A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. J Chem Inf Model 46:1984–1995. doi:10.1021/ci060132x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Ravikumar Muttineni (Application Scientist), Er. Anirban Banerjee (IT Consultant), and Mr. Raghu Rangaswamy from Schrodinger, Bangalore, for their constant scientific and technical support to handle Schrodinger software and work smoothly. Author, Bhawna Vyas, thank acknowledge Indian Council of Medical Research (ICMR), New Delhi, for providing Senior Research Fellowship (SRF); Grant No. 45/15/2011/BIF/BMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baldev Singh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, B., Singh, M., Kaur, M. et al. Pharmacophore and docking-based hierarchical virtual screening for the designing of aldose reductase inhibitors: synthesis and biological evaluation. Med Chem Res 25, 609–626 (2016). https://doi.org/10.1007/s00044-016-1510-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1510-5

Keywords

Navigation