Skip to main content
Log in

Metal-based biologically active compounds: design, synthesis, medicinal, toxicity and DNA interaction assay

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The mixed-ligand oxovanadium complexes with 3-(diphenylphosphino)-propionic acid and various fluoroquinolones have been prepared. Physical (magnetic susceptibility, molar conductance and themogravimetry), spectral (IR, ESI–MS, EPR and electronic) and analytical data have established the structures of synthesized oxovanadium(IV) complexes. The electronic absorption spectra, ESR spectra and magnetic susceptibility measurements of the complexes indicate square-pyramidal geometry for all oxovanadium(IV) complexes. The DNA binding characteristics of the complexes have been investigated by absorbance and viscosity measurements. Photophysical studies reveal that the complexes interact with calf thymus DNA with an intrinsic binding constant about 2–9 × 105 M−1. The DNA cleavage activity has been carried out by gel electrophoresis experiment using supercoiled form of pUC19 DNA under aerobic conditions, and all the complexes show efficient cleavage of DNA. The antimicrobial activities of the complexes were screened against three gram-negative and two gram-positive microorganisms in terms of minimum inhibitory concentration (MIC). All the complexes screened for MIC against tuberculosis. The activity data show that the metal complexes have a promising biological activity comparable with the parent ligand and fluoroquinolones.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An Y, Tong M-L, Ji L-N, Mao Z-W (2006) Double-strand DNA cleavage by copper complexes of 2,2[prime or minute]-dipyridyl with electropositive pendants. Dalton Trans 17:2066–2071

    Article  PubMed  CAS  Google Scholar 

  • Anitha C, Sheela CD, Tharmaraj P, Sumathi S (2012) Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde. Spectrochim Acta Part A Mol Biomol Spectrosc 96:493–500

    Article  CAS  Google Scholar 

  • Baguley BC, Le Bret M (1984) Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: a possible electron-transfer effect. Biochemistry 23(5):937–943

    Article  PubMed  CAS  Google Scholar 

  • Balaji B, Balakrishnan B, Perumalla S, Karande AA, Chakravarty AR (2014) Photoactivated cytotoxicity of ferrocenyl-terpyridine oxovanadium(IV) complexes of curcuminoids. Eur J Med Chem 85:458–467

    Article  PubMed  CAS  Google Scholar 

  • Balaji B, Balakrishnan B, Perumalla S, Karande AA, Chakravarty AR (2015) Photocytotoxic oxovanadium(IV) complexes of ferrocenyl-terpyridine and acetylacetonate derivatives. Eur J Med Chem 92:332–341

    Article  PubMed  CAS  Google Scholar 

  • Ballhausen CJ, Gray HB (1962) The electronic structure of the vanadyl ion. Inorg Chem 1(1):111–122

    Article  CAS  Google Scholar 

  • Bandoli G, Clemente DA, Croatto U, Vidali M, Vigato PA (1971) Preparation and crystal and molecular structure of [Nn[prime or minute]-O-phenylene-bis(salicylideneiminato)Uo2(Etoh)]. J Chem Soc D Chem Commun 21:1330–1331

    Article  Google Scholar 

  • Beltagi AM (2003) Determination of the antibiotic drug pefloxacin in bulk form, tablets and human serum using square wave cathodic adsorptive stripping voltammetry. J Pharm Biomed Anal 31(6):1079–1088

    Article  PubMed  CAS  Google Scholar 

  • Benítez J, Guggeri L, Tomaz I, Pessoa JC, Moreno V, Lorenzo J, Avilés FX, Garat B, Gambino D (2009) A novel vanadyl complex with a polypyridyl DNA intercalator as ligand: a potential anti-protozoa and anti-tumor agent. J Inorg Biochem 103(10):1386–1394

    Article  PubMed  CAS  Google Scholar 

  • Bush RC, Angelici RJ (1988) Phosphine basicities as determined by enthalpies of protonation. Inorg Chem 27(4):681–686

    Article  CAS  Google Scholar 

  • Butler A, Carrano CJ (1991) Coordination chemistry of vanadium in biological systems. Coord Chem Rev 109(1):61–105

    Article  CAS  Google Scholar 

  • Butler A, Walker JV (1993) Marine haloperoxidases. Chem Rev 93(5):1937–1944

    Article  CAS  Google Scholar 

  • Carter MT, Bard AJ (1987) Voltammetric studies of the interaction of tris(1,10-phenanthroline)cobalt(III) with DNA. J Am Chem Soc 109(24):7528–7530

    Article  CAS  Google Scholar 

  • Chasteen, ND (1990) Vanadium in biological systems. Springer, Netherlands. doi:10.1007/978-94-009-2023-1

    Book  Google Scholar 

  • Chaudhuri MK, Chettri SK, Paul PC, Srinivas P (1996) Fluoride-assisted stabilisation of amino acid complexes of vanadium synthesis and characterisation. J Fluor Chem 78(2):131–135

    Article  CAS  Google Scholar 

  • Chen L-M, Liu J, Chen J-C, Tan C-P, Shi S, Zheng K-C, Ji L-N (2008) Synthesis, characterization, DNA-binding and spectral properties of complexes [Ru(L)4(Dppz)]2 + (L = Im and Meim). J Inorg Biochem 102(2):330–341

    Article  PubMed  CAS  Google Scholar 

  • Costisor O, Linert W (2002) On vanadium sulfur chemistry. Rev Inorg Chem 22:125-162. doi: 10.1515/REVIC.2002.22.3-4.125

    Article  CAS  Google Scholar 

  • Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104(2):849–902

    Article  PubMed  CAS  Google Scholar 

  • D’Cruz OJ, Dong Y, Uckun FM (1999) Spermicidal activity of oxovanadium(IV) complexes of 1,10-phenanthroline, 2,2′-bipyridyl, 5′-bromo-2′-hydroxyacetophenone and derivatives in humans. Biol Reprod 60(2):435–444

    Article  PubMed  Google Scholar 

  • Dhar S, Reddy PAN, Chakravarty AR (2004) Intramolecular nucleophilic activation promoting efficient hydrolytic cleavage of DNA by (aqua)bis(dipyridoquinoxaline)copper(II) complex. Dalton Trans 7(5):697–698

    Article  CAS  Google Scholar 

  • Dolaz M (2010) Synthesis, structural characterization, spectroscopic and electrochemical studies of N,N-bis[(2,4-dimethoxyphenyl) methylidene]butane-1,4-diamine. Curr Org Chem 14(3):281

    Article  CAS  Google Scholar 

  • Dong Y, Narla RK, Sudbeck E, Uckun FM (2000) Synthesis, X-ray structure, and anti-leukemic activity of oxovanadium(IV) complexes. J Inorg Biochem 78(4):321–330

    Article  PubMed  CAS  Google Scholar 

  • Efthimiadou EK, Sanakis Y, Katsarou M, Raptopoulou CP, Karaliota A, Katsaros N, Psomas G (2006) Neutral and cationic mononuclear copper(II) complexes with enrofloxacin: structure and biological activity. J Inorg Biochem 100(8):1378–1388

    Article  PubMed  CAS  Google Scholar 

  • El-Metwally NM, El-Shazly RM, Gabr IM, El-Asmy AA (2005) Physical and Spectroscopic studies on novel vanadyl complexes of some substituted thiosemicarbazides. Spectrochim Acta Part A Mol Biomol Spectrosc 61(6):1113–1119

    Article  CAS  Google Scholar 

  • Elsegood MRJ, Smith MB, Staniland PM (2006) Neutral molecular Pd6 hexagons using Κ3-P2o-terdentate ligands. Inorg Chem 45(17):6761–6770

    Article  PubMed  CAS  Google Scholar 

  • Erkkila KE, Odom DT, Barton JK (1999) Recognition and reaction of metallointercalators with DNA. Chem Rev 99(9):2777–2796

    Article  PubMed  CAS  Google Scholar 

  • Gajera SB, Mehta JV, Patel MN (2015) DNA interaction, cytotoxicity, antibacterial and antituberculosis activity of oxovanadium(IV) complexes derived from fluoroquinolones and 4-hydroxy-5-((4-hydroxyphenyl)diazenyl)thiazole-2(3 h)-thione. RSC Adv 5:21710

    Article  CAS  Google Scholar 

  • Geary WJ (1971) The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev 7(1):81–122

    Article  CAS  Google Scholar 

  • Gölcü A, Dolaz M, Demirelli H, Diðrak M, Serin S (2006) Spectroscopic and analytic properties of new copper(II) complex of antiviral drug valacyclovir. Transiti Met Chem 31(5):658–665

    Article  CAS  Google Scholar 

  • Ikuta S, Kebarle P, Bancroft GM, Chan T, Puddephatt RJ (1982) Basicities of methyl-, methylphenyl-, and phenylphosphines in the gas phase. J Am Chem Soc 104(22):5899–5902

    Article  CAS  Google Scholar 

  • Irwin MJ, Vittal JJ, Yap GPA, Puddephatt RJ (1996) Linear gold(I) coordination polymers: a polymer with a unique sine wave conformation. J Am Chem Soc 118(51):13101–13102

    Article  CAS  Google Scholar 

  • Kühl O (2005) Predicting the net donating ability of phosphines—do we need sophisticated theoretical methods? Coord Chem Rev 249(5–6):693–704

    Article  CAS  Google Scholar 

  • Leelavathy L, Anbu S, Kandaswamy M, Karthikeyan N, Mohan N (2009) Synthesis and characterization of a new series of unsymmetrical macrocyclic binuclear vanadyl(IV) complexes: electrochemical antimicrobial, DNA binding and cleavage studies. Polyhedron 28(5):903–910

    Article  CAS  Google Scholar 

  • Leininger S, Olenyuk B, Stang PJ (2000) Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem Rev 100(3):853–908

    Article  PubMed  CAS  Google Scholar 

  • Li L, Murthy NN, Telser J, Zakharov LN, Yap GPA, Rheingold AL, Karlin KD (2006) Rokita SE (2006) Targeted guanine oxidation by a dinuclear copper(II) complex at single stranded/double stranded DNA junctions. Inorg Chem 45(18):7144–7159

    Article  PubMed  CAS  Google Scholar 

  • Li T, Lough AJ, Morris RH (2007) An acidity scale of tetrafluoroborate salts of phosphonium and iron hydride compounds in [D2]dichloromethane. Chem Eur J 13(13):3796–3803

    Article  PubMed  CAS  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3(2):208-IN1

    Article  Google Scholar 

  • Maurya MR, Khurana S, Schulzke C, Rehder D (2001) Dioxo- and oxovanadium(V) complexes of biomimetic hydrazone ono donor ligands: synthesis, characterisation, and reactivity. Eur J Inorg Chem 2001(3):779–788

    Article  Google Scholar 

  • Maurya MR, Kumar A, Pessoa JC (2011) Vanadium complexes immobilized on solid supports and their use as catalysts for oxidation and functionalization of alkanes and alkenes. Coord Chem Rev 255(19–20):2315–2344

    Article  CAS  Google Scholar 

  • Mehta JV, Gajera SB, Patel MN (2015) Antimalarial, antimicrobial, cytotoxic, DNA interaction and sod like activities of tetrahedral copper(II) complexes. Spectrochim Acta Part A Mol Biomol Spectrosc 136:1881

    Article  CAS  Google Scholar 

  • Michibata H, Yamaguchi N, Uyama T, Ueki T (2003) Molecular biological approaches to the accumulation and reduction of vanadium by ascidians. Coord Chem Rev 237(1–2):41–51

    Article  CAS  Google Scholar 

  • Mishra AP, Soni M (2008) Synthesis structural, and biological studies of some schiff bases and their metal complexes. Met Based Drugs 2008:875410

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mudasir NY, Inoue H (1999) DNA binding of iron(II) mixed-ligand complexes containing 1,10-phenanthroline and 4,7-diphenyl-1,10-phenanthroline. J Inorg Biochem 77(3–4):239–247

    Article  PubMed  CAS  Google Scholar 

  • Muhammad N, Ali S, Shahzadi S, Khan AN (2008) Oxovanadium(IV) complexes of non-steroidal anti-inflammatory drugs: synthesis, spectroscopy, and antimicrobial activity. Russ J Coord Chem 34(6):448–453

    Article  CAS  Google Scholar 

  • Noblía P, Vieites M, Parajón-Costa BS, Baran EJ, Cerecetto H, Draper P, González M, Piro OE, Castellano EE, Azqueta A, de Ceráin AL, Monge-Vega A, Gambino D (2005) Vanadium(V) complexes with salicylaldehyde semicarbazone derivatives bearing in vitro anti-tumor activity toward kidney tumor cells (Tk-10): crystal structure of [Vvo2(5-bromosalicylaldehyde semicarbazone)]. J Inorg Biochem 99(2):443–451

    Article  PubMed  CAS  Google Scholar 

  • Pandey OP (1986) Oxovanadium(IV) complexes of carbohydrazones and thiocarbohydrazones. Polyhedron 5(10):1587–1591

    Article  CAS  Google Scholar 

  • Patel MN, Patel SH, Chhasatia MR, Parmar PA (2008) Five-coordinated oxovanadium(IV) complexes derived from amino acids and ciprofloxacin: synthesis spectral, antimicrobial, and DNA interaction approach. Bioorg Med Chem Lett 18(24):6494–6500

    Article  PubMed  CAS  Google Scholar 

  • Qin Z, Jennings MC, Puddephatt RJ (2003) Self-assembly in palladium(II) and platinum(II) chemistry: the biomimetic approach. Inorg Chem 42(6):1956–1965

    Article  PubMed  CAS  Google Scholar 

  • Rahman MM, Liu HY, Eriks K, Prock A, Giering WP (1989) Quantitative analysis of ligand effects. Part 3. Separation of phosphorus(III) ligands into pure.sigma.-donors and.sigma.-donor/.pi.-acceptors. Comparison of basicity and.sigma.-donicity. Organometallics 8(1):1–7

    Article  CAS  Google Scholar 

  • Rattan A (2000) Antimicrobials in laboratory medicine. Published by Churchill BI, Livingstone, New Delhi, p 85.

  • Ravindar V, Schumann H, Hemling H, Blum J (1995) Synthesis and structure determination of some platinum(II) complexes with hydrophilic carboxylated tertiary phosphine ligands. Inorg Chim Acta 240(1–2):145–152

    Article  CAS  Google Scholar 

  • Reynolds JEF (1993) The extra pharmacopeia. The Pharmaceutical Press, London

    Google Scholar 

  • Rodríguez-Rodríguez C, Telpoukhovskaia M, Orvig C (2012) The art of building multifunctional metal-binding agents from basic molecular scaffolds for the potential application in neurodegenerative diseases. Coord Chem Rev 256:2308

    Article  CAS  Google Scholar 

  • Sakurai H, Kojima Y, Yoshikawa Y, Kawabe K, Yasui H (2002) Antidiabetic vanadium(IV) and zinc(II) complexes. Coord Chem Rev 226(1–2):187–198

    Article  CAS  Google Scholar 

  • Seena EB, Mathew N, Kuriakose M, Kurup MRP (2008) Synthesis, spectral and EPR studies of oxovanadium(IV) complexes incorporating tridentate ONO donor hydrazone ligands: structural study of one oxovanadium(V) complex. Polyhedron 27(5):1455–1462

    Article  CAS  Google Scholar 

  • Sengupta SK, Pandey OP, Pandey JK, Pandey GK (2002) Homobinuclear oxovanadium(IV) complexes with octaaza macrocyclic ligands derived from primary diamines and 3,6-dimethyl/diphenyl-4,5-diazaocta-3,5-diene-2,7-dione. J Coord Chem 55(12):1455–1460

    Article  CAS  Google Scholar 

  • Sigel H (1995) Metal ions in biological systems, vanadium and its role in life, vol 31. Marcel Dekker, New York, pp 1–779

    Google Scholar 

  • Smith MB, Dale SH, Coles SJ, Gelbrich T, Hursthouse MB, Light ME (2006) Isomeric dinuclear gold(I) complexes with highly functionalised ditertiary phosphines: self-assembly of dimers, rings and 1-D polymeric chains. Cryst Eng Commun 8(2):140–149

    Article  CAS  Google Scholar 

  • Smith MB, Dale SH, Coles SJ, Gelbrich T, Hursthouse MB, Light ME, Horton PN (2007) Hydrogen bonded supramolecular assemblies based on neutral square-planar palladium(II) complexes. Cryst Eng Commun 9(2):165–175

    Article  CAS  Google Scholar 

  • Sultana N, Arayne MS, Gul S, Shamim S (2010) Sparfloxacin–metal complexes as antifungal agents—their synthesis, characterization and antimicrobial activities. J Mol Struct 975(1–3):285–291

    Article  CAS  Google Scholar 

  • Tian M, Ihmels H, Brotz E (2010) DNA cleavage by the Cu(II) complex of the DNA-intercalating 9-bis(pyridin-2-ylmethyl)aminobenzo[B]quinolizinium. Dalton Trans 39(35):8195–8202

    Article  PubMed  CAS  Google Scholar 

  • Tolis EJ, Teberekidis VI, Raptopoulou CP, Terzis A, Sigalas MP, Deligiannakis Y, Kabanos TA (2001) The effect of charged axial ligands on the EPR parameters in oxovanadium(IV) compounds: an unusual reduction of the Az(51v) values. Chem Eur J 7(12):2698–2710

    Article  PubMed  CAS  Google Scholar 

  • Trommel JS, Marzilli LG (2001)  Synthesis and DNA binding of novel water-soluble cationic methylcobalt porphyrins. Inorg Chem 40(17):4374

    Article  PubMed  CAS  Google Scholar 

  • van Vlieta PM, Toekimina SMS, Haasnoota JG, Reedijk J, Novákováb O, Vránab O, Brabec V (1995) Mer-[Ru(terpy)Cl3] (terpy = 2,2′:6′,2″-terpyridine) shows biological activity, forms interstrand cross-links in DNA and binds two guanine derivatives in a trans configuration. Inorgan Chim Acta 231(1):57

    Article  Google Scholar 

  • Xue LW, Feng YX, Zhang CX (2014) Synthesis and structures of copper(II) and nickel(II) complexes derived from 2-methyl-6-[(2-morpholin-4-ylethylimino)methyl]phenol with antimicrobial activity. Synth React Inorg Met Org Nano Met Chem 44(10):1541

    Article  CAS  Google Scholar 

  • Zhang S, Zhu Y, Chao T, Wei H, Yang Z, Lin L, Ding J, Zhang J, Guo Z (2004) A novel cytotoxic ternary copper(II) complex of 1,10-phenanthroline and l-threonine with DNA nuclease activity. J Inorg Biochem 98(12):2099–2106

    Article  PubMed  CAS  Google Scholar 

  • Zhao H-Y, Zhang Y-H, Xing Y-H, Li Z-P, Cao Y-Z, Ge M-F, Zeng X-Q, Niu S-Y (2009) A series of oxo-vanadium(IV) complexes containing mixed ligands of poly(pyrazolyl)borate and organic carboxylic acid: synthesis, structural characterization and primary study of bromination reaction activities. Inorg Chim Acta 362(11):4110–4118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Head, Department of Chemistry, Sardar Patel University for providing research facilities and SICART, Vallabh Vidyanagar for FT-IR. SBG and JVM acknowledge UGC, New Delhi, for providing BSR fellowships. We are also thankful to Dhanji P. Rajani, Microcare Laboratory, Surat, for doing MIC in tuberculosis screening of the compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan N. Patel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajera, S.B., Mehta, J.V. & Patel, M.N. Metal-based biologically active compounds: design, synthesis, medicinal, toxicity and DNA interaction assay. Med Chem Res 25, 526–537 (2016). https://doi.org/10.1007/s00044-016-1503-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1503-4

Keywords

Navigation