Skip to main content
Log in

Identification of structural requirements of estrogen receptor modulators using pharmacoinformatics techniques for application to estrogen therapy

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In this study, we explored the structural requirements of known estrogen receptor modulators for biological activity using pharmacoinformatics approaches to elucidate critical functionalities for new, potent and less toxic chemical agents for successful application in estrogen therapy. For this purpose, a group of nonsteroidal ligands 7-thiabicyclo[2.2.1]hept-2-ene-7-oxide derivatives were collected from the literature to perform quantitative structure–activity relationship (QSAR), pharmacophore and molecular docking studies. The 2D QSAR models (R 2 α  = 0.857, se α  = 0.370, Q 2 α  = 0.848, R 2pred−α  = 0.675, s pα  = 0.537; R 2 β  = 0.874, se β  = 0.261, Q 2 β  = 0.859, R 2pred−β  = 0.659, s pβ  = 0.408) explained that hydrophobicity and molar refractivity were crucial for binding affinity in both α- and β-subtypes. The space modeling study (R 2 α  = 0.955, se α  = 1.311, Q 2 α  = 0.932, R 2pred−α  = 0.737, s pα  = 0.497; R 2 β  = 0.885, se β  = 1.328, Q 2 β  = 0.878, R 2pred−β  = 0.769, s pβ  = 0.336) revealed the importance of HB donor and hydrophobic features for both subtypes, whereas HB acceptor and aromatic ring were critical for α- and β-subtypes, respectively. The functionalities developed in the QSAR and pharmacophore studies were substantiated by molecular docking studies which provided the preferred orientation of ligands for effective interaction at the active site cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Accelrys (2013) Discovery studio modeling environment, Release 4.0. Accelrys Software Inc., San Diego

    Google Scholar 

  • Balaban AT, Khadikar PV, Supuran CT, Thakur A, Thakur M (2005) Study on supramolecular complexing ability vis-a-vis estimation of pKa of substituted sulfonamides: dominating role of Balaban index (J). Bioorg Med Chem Lett 15:3966–3973. doi:10.1016/j.bmcl.2005.05.136

    Article  PubMed  CAS  Google Scholar 

  • Berman HM et al. (2000) The protein data bank. Nucl Acids Res 28:235–242

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brogia S, Papazafiric P, Roussisd V, Tafi A (2013) 3D-QSAR using pharmacophore-based alignment and virtual screening for discovery of novel MCF-7 cell line inhibitors. Eur J Med Chem 67:344–351

    Article  CAS  Google Scholar 

  • Burrow PD, Modelli A (2013) On the treatment of LUMO energies for their use as descriptors. SAR QSAR Environ Res 24:647–659. doi:10.1080/1062936X.2013.792873

    Article  PubMed  CAS  Google Scholar 

  • Chang YH, Chen JY, Hor CY, Chuang YC, Yang CB, Yang CN (2013) Computational study of estrogen receptor-alpha antagonist with three-dimensional quantitative structure–activity relationship support vector regression, and linear regression methods. Int J Med Chem 2013:1–3

    Google Scholar 

  • Chlebowski RT et al. (2003) Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the women’s health initiative randomized trial. JAMA 289:3243–3253. doi:10.1001/jama.289.24.3243

    Article  PubMed  CAS  Google Scholar 

  • Chmel R, Rob L, Strnad P (2002) [What can we expect of raloxifene in the treatment of postmenopausal osteoporosis–views of a gynecologist] Ceska gynekologie/Ceska lekarska spolecnost J Ev Purkyne 67:187–191

  • Clarke R et al. (2003) Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene 22:7316–7339. doi:10.1038/sj.onc.1206937

    Article  PubMed  CAS  Google Scholar 

  • Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967. doi:10.1021/ja00226a005

    Article  PubMed  CAS  Google Scholar 

  • Dalkas GA, Vlachakis D, Tsagkrasoulis D, Kastania A, Kossida S (2012) State-of-the-art technology in modern computer-aided drug design Brifiefings. Bioinformatics 14:745–752

    PubMed  Google Scholar 

  • Doisneau-Sixou SF, Sergio CM, Carroll JS, Hui R, Musgrove EA, Sutherland RL (2003) Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer 10:179–186

    Article  PubMed  CAS  Google Scholar 

  • Dowers TS, Qin ZH, Thatcher GR, Bolton JL (2006) Bioactivation of selective estrogen receptor modulators (SERMs). Chem Res Toxicol 19:1125–1137. doi:10.1021/tx060126v

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fisher B et al. (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90:1371–1388

    Article  PubMed  CAS  Google Scholar 

  • Fisher B et al. (2005) Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 97:1652–1662. doi:10.1093/jnci/dji372

    Article  PubMed  CAS  Google Scholar 

  • Foster JS, Henley DC, Ahamed S, Wimalasena J (2001a) Estrogens and cell-cycle regulation in breast cancer. Trends Endocrinol Metab TEM 12:320–327

    Article  PubMed  CAS  Google Scholar 

  • Foster JS, Henley DC, Bukovsky A, Seth P, Wimalasena J (2001b) Multifaceted regulation of cell cycle progression by estrogen: regulation of Cdk inhibitors and Cdc25A independent of cyclin D1-Cdk4 function. Mol Cell Biol 21:794–810. doi:10.1128/MCB.21.3.794-810.2001

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gehrig PA, Bae-Jump VL, Boggess JF, Groben PA, Fowler WC Jr, Van Le L (2004) Association between uterine serous carcinoma and breast cancer. Gynecol Oncol 94:208–211. doi:10.1016/j.ygyno.2004.04.009

    Article  PubMed  Google Scholar 

  • Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276

    Article  PubMed  CAS  Google Scholar 

  • Gupta MK, Prabhakar YS (2008) QSAR study on tetrahydroquinoline analogues as plasmodium protein farnesyltransferase inhibitors: a comparison of rationales of malarial and mammalian enzyme inhibitory activities for selectivity. Eur J Med Chem 43:2751–2767. doi:10.1016/j.ejmech.2008.01.025

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson JA (1999) Estrogen receptor beta—a new dimension in estrogen mechanism of action. J Endocrinol 163:379–383

    Article  PubMed  CAS  Google Scholar 

  • Holst F et al. (2007) Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat Genet 39:655–660. doi:10.1038/ng2006

    Article  PubMed  CAS  Google Scholar 

  • Hopfinger AJ, Tokarski JS (1997) Three-dimensional quantitative structure–activity relationship analysis. In: Charifson PS (ed) Practical application of computer-aided drug design. MarcelDekker Inc, New York, pp 105–164

    Google Scholar 

  • Islam MA, Nagar S, Das S, Mukherjee A, Saha A (2008) Molecular design based on receptor-independent pharmacophore: application to estrogen receptor ligands. Biol Pharm Bull 31:1453–1460

    Article  PubMed  CAS  Google Scholar 

  • Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem Biol Interact 171:165–176. doi:10.1016/j.cbi.2006.12.006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim Y, Nam NH, You YJ, Ahn BZ (2002) Synthesis and cytotoxicity of 3,4-diaryl-2(5H)-furanones. Bioorg Med Chem Lett 12:719–722

    Article  PubMed  CAS  Google Scholar 

  • Kristam R, Gillet VJ, Lewis RA, Thorner D (2005) Comparison of conformational analysis techniques to generate pharmacophore hypotheses using catalyst. J Chem Inf Model 45:461–476. doi:10.1021/ci049731z

    Article  PubMed  CAS  Google Scholar 

  • Kubinyi H (2004) 2D QSAR models: Hansch and Free-Wilson analyses. In: Bultinck P, Winter HD, Langenaeker W, Tollenaere JP (eds) Computer medicinal chemistry drug discovery. Marcel Dekker Inc, NewYork, pp 539–570

    Google Scholar 

  • Kubinyi H, Hamprecht FA, Mietzner T (1998) Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. J Med Chem 41:2553–2564. doi:10.1021/jm970732a

    Article  PubMed  CAS  Google Scholar 

  • Kupcewicz B, Balcerowska-Czerniak G, Malecka M, Paneth P, Krajewska U, Rozalski M (2013) Structure-cytotoxic activity relationship of 3-arylideneflavanone and chromanone (E, Z isomers) and 3-arylflavones. Bioorg Med Chem Lett 23:4102–4106. doi:10.1016/j.bmcl.2013.05.044

    Article  PubMed  CAS  Google Scholar 

  • Levet A et al. (2013) Quantitative structure-activity relationship to predict acute fish toxicity of organic solvents. Chemosphere 93:1094–1103. doi:10.1016/j.chemosphere.2013.06.002

    Article  PubMed  CAS  Google Scholar 

  • Lewis JS, Jordan VC (2005) Selective estrogen receptor modulators (SERMs): mechanisms of anticarcinogenesis and drug resistance. Mutat Res 591:247–263. doi:10.1016/j.mrfmmm.2005.02.028

    Article  PubMed  CAS  Google Scholar 

  • Lewis DF, Parker MG, King RJ (1995) Molecular modelling of the human estrogen receptor and ligand interactions based on site-directed mutagenesis and amino acid sequence homology. J Steroid Biochem Mol Biol 52:55–65

    Article  PubMed  CAS  Google Scholar 

  • Li H, Sutter J, Hoffman R (2000) Pharmacophore perception, development, and use in drug design. International University Line, California

    Google Scholar 

  • Maximov PY, Lee TM, Jordan VC (2013) The discovery and development of selective estrogen receptor modulators (SERMs) for clinical practice. Curr Clin Pharmacol 8:135–155

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mitra I, Saha A, Roy K (2010) Pharmacophore mapping of arylamino-substituted benzo[b]thiophenes as free radical scavengers. J Mol Model 16:1585–1596. doi:10.1007/s00894-010-0661-4

    Article  PubMed  CAS  Google Scholar 

  • MOE (2007) Molecular operating environment (MOE). Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada

  • Mukherjee S, Saha A, Roy K (2005) QSAR of estrogen receptor modulators: exploring selectivity requirements for ER(alpha) versus ER(beta) binding of tetrahydroisoquinoline derivatives using E-state and physicochemical parameters. Bioorg Med Chem Lett 15:957–961. doi:10.1016/j.bmcl.2004.12.048

    Article  PubMed  CAS  Google Scholar 

  • Nandy A, Kar S, Roy K (2013) Development and validation of regression-based QSAR models for quantification of contributions of molecular fragments to skin sensitization potency of diverse organic chemicals. SAR QSAR Environ Res 24:1009–1023. doi:10.1080/1062936X.2013.821422

    Article  PubMed  CAS  Google Scholar 

  • Nantasenamat C, Worachartcheewan A, Prachayasittikul S, Isarankura-Na-Ayudhya C, Prachayasittikul V (2013) QSAR modeling of aromatase inhibitory activity of 1-substituted 1,2,3-triazole analogs of letrozole. Eur J Med Chem 69:99–114. doi:10.1016/j.ejmech.2013.08.015

    Article  PubMed  CAS  Google Scholar 

  • Ojha PK, Mitra I, Das RN, Roy K (2011) Further exploring rm2 metrics for validation of QSPR models. Chemometr Intell Lab Syst 107:194–205

    Article  CAS  Google Scholar 

  • Pickar JH, MacNeil T, Ohleth K (2010) SERMs progress and future perspectives. Maturitas 67:129–138. doi:10.1016/j.maturitas.2010.05.009

    Article  PubMed  CAS  Google Scholar 

  • Pike VW, Law MP, Osman S, Davenport RJ, Rimoldi O, Giardina D, Camici PG (2000) Selection, design and evaluation of new radioligands for PET studies of cardiac adrenoceptors. Pharm Acta Helv 74:191–200

    Article  PubMed  CAS  Google Scholar 

  • Platts JA, Oldfield SP, Reif MM, Palmucci A, Gabano E, Osella D (2006) The RP-HPLC measurement and QSPR analysis of logP(o/w) values of several Pt(II) complexes. J Inorg Biochem 100:1199–1207. doi:10.1016/j.jinorgbio.2006.01.035

    Article  PubMed  CAS  Google Scholar 

  • Rastija V, Medic-Saric M (2009) QSAR study of antioxidant activity of wine polyphenols. Eur J Med Chem 44:400–408. doi:10.1016/j.ejmech.2008.03.001

    Article  PubMed  CAS  Google Scholar 

  • Richardson TI, Dodge JA, Wang Y, Durbin JD, Krishnan V, Norman BH (2007) Benzopyrans as selective estrogen receptor beta agonists (SERBAs). Part 5: combined A- and C-ring structure-activity relationship studies. Bioorg Med Chem Lett 17:5563–5566. doi:10.1016/j.bmcl.2007.08.009

    Article  PubMed  CAS  Google Scholar 

  • Riggs BL, Hartmann LC (2003) Selective estrogen-receptor modulators—mechanisms of action and application to clinical practice. N Engl J Med 348:618–629. doi:10.1056/NEJMra022219

    Article  PubMed  CAS  Google Scholar 

  • Rossouw JE et al. (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. Jama 288:321–333

    Article  PubMed  CAS  Google Scholar 

  • Roy PP, Roy K (2008) On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 27:302–313

    Article  CAS  Google Scholar 

  • Roy PP, Paul S, Mitra I, Roy K (2009) On two novel parameters for validation of predictive QSAR models. Molecules 14:1660–1701

    Article  PubMed  CAS  Google Scholar 

  • Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H (2012) Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model 52:396–408. doi:10.1021/ci200520g

    Article  PubMed  CAS  Google Scholar 

  • Sadler BR, Cho SJ, Ishaq KS, Chae K, Korach KS (1998) Three-dimensional quantitative structure-activity relationship study of nonsteroidal estrogen receptor ligands using the comparative molecular field analysis/cross-validated r2-guided region selection approach. J Med Chem 41:2261–2267. doi:10.1021/jm9705521

    Article  PubMed  CAS  Google Scholar 

  • Saxena AK et al. (2003) QSAR studies in substituted 1,2,3,4,6,7,12,12a-octa-hydropyrazino[2’,1’:6,1]pyrido[3,4-b]indoles–a potent class of neuroleptics. Bioorg Med Chem 11:2085–2090

    Article  PubMed  CAS  Google Scholar 

  • Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937

    Article  PubMed  CAS  Google Scholar 

  • Smith HM, Knox AJ, Zisterer DM, Lloyd DG, Meegan MJ (2007) Flexible estrogen receptor modulators: synthesis, biochemistry and molecular modeling studies for 3-benzyl-4,6-diarylhex-3-ene and 3,4,6-triarylhex-3-ene derivatives. Med Chem 3:135–155

    Article  PubMed  CAS  Google Scholar 

  • Snedecor GW, Cochran WG (1967) Statistical methods Ames, 6th edn. State University Press, Iowa

    Google Scholar 

  • Vedani A, Dobler M (2002) Multidimensional QSAR: moving from three- to five-dimensional concepts. Quant Struct Act Relat 21:382–390

    Article  CAS  Google Scholar 

  • Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design—a review. Curr Top Med Chem 10:95–115

    Article  PubMed  CAS  Google Scholar 

  • Wang P et al. (2012) Identification and structure-activity relationships of a novel series of estrogen receptor ligands based on 7-thiabicyclo[2.2.1]hept-2-ene-7-oxide. J Med Chem 55:2324–2341. doi:10.1021/jm201556r

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wildman SA, Crippen GM (1999) Prediction of physicochemical parameters by atomic contributions. J Chem Inf Model 39:868–873

    Article  CAS  Google Scholar 

  • Yaffe K, Sawaya G, Lieberburg I, Grady D (1998) Estrogen therapy in postmenopausal women: effects on cognitive function and dementia. Jama 279:688–695

    Article  PubMed  CAS  Google Scholar 

  • Zhang L et al. (2013) Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches. Toxicol Appl Pharmacol 272:67–76. doi:10.1016/j.taap.2013.04.032

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Md.A. Islam and T.S. Pillay were funded by the University of Pretoria Vice Chancellor’s postdoctoral fellowship and National Research Foundation (NRF), South Africa Innovation postdoctoral fellowship schemes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir S. Pillay.

Ethics declarations

Conflict interests

The authors declare that they have no conflict interests.

Additional information

Md. Ataul Islam, Darshakkumar Ashokbhai Patel and Savansinh Ghanshyamsinh Rathod have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.A., Patel, D.A., Rathod, S.G. et al. Identification of structural requirements of estrogen receptor modulators using pharmacoinformatics techniques for application to estrogen therapy. Med Chem Res 25, 407–421 (2016). https://doi.org/10.1007/s00044-015-1496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-015-1496-4

Keywords

Navigation