Skip to main content

Advertisement

Log in

Pyrazolo[3,4-d]pyrimidines as the inhibitors of mycobacterial β-oxidation trifunctional enzyme

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Tuberculosis, one of the oldest known human diseases, is still one of the major causes of mortality. Mycobacterium, a genus of Actinobacteria, is responsible for tuberculosis (Mycobacterium tuberculosis) and leprosy (Mycobacterium leprae). Because of producing high toxicity and resistance of existing drugs, the antitubercular drugs with less toxicity, potential activity and safer therapeutic profiles is an urgent need. Pyrazolo[3,4-d]pyrimidine compounds show various pharmacological activities including antitubercular. Molecular docking studies of eight pyrazolo[3,4-d]pyrimidine derivatives have been carried out with the mycobacterial β-oxidation trifunctional enzyme (mtTFE) using Autodock and Glide docking protocols. The docking results demonstrate good binding capabilities of these molecules with mtTFE. Molecular dynamics simulations of the best docked complexes of the compounds demonstrating better binding affinities and satisfactory ADME properties have been carried out using DESMOND for 10.0 ns duration. The average RMSD variation and simulation interaction study indicate that the complexes remain stable during the course of dynamics. However, molecules 6 and 7 exhibit better stability than other molecules and are the suitable candidates to be carried forward as a potential lead in the discovery of drugs to contest tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albery WJ, Foulds AW, Hall KJ, Hillman AR, Edgell RG, Orchard AF (1979) Thionine coated electrode for photogalvanic cells. Nature 282:793–797

    Article  CAS  Google Scholar 

  • Bekhit AA, Abdel-Azeim T (2004) Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorg Med Chem 12:1935–1945

    Article  CAS  PubMed  Google Scholar 

  • Bissantz C, Folkers G, Rognan D (2000) Protein based virtual screening of chemical database. 1. Evaluation of different docking/scoring combinations. J Med Chem 43:4759–4767

    Article  CAS  PubMed  Google Scholar 

  • Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the ACM/IEEE conference on supercomputers (SC06), Tampa, Florida, November 11–17

  • Carlomagno F, Vitagliano D, Guida T, Basolo F, Castellone MD, Melillo RM, Fusco A, Santro M (2003) Efficient inhibition of RET/papillary thyroid carcinoma oncogenic kinases by 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). J Clin Endocrinol Metab 88:1897–1902

    Article  CAS  PubMed  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  PubMed  Google Scholar 

  • Davies LP, Chow SC, Skeritt JH, Brown DJ, Johnston G (1984) Pyrazolo[3,4-d]pyrimidines as adenosine antagonists. Life Sci 34:2117–2128

    Article  CAS  PubMed  Google Scholar 

  • DESMOND Molecular Dynamics System, version 3.1, D. E. Shaw Research, New York, NY (2012)

  • Elion GB, Callahan SW, Nathan H, Bieber S, Rundles RW, Hilching GH (1963) Potentiation by inhibition of drug degradation: 6-substituted purines and xanthine oxidase. Biochem Pharmacol 12:85–93

    Article  CAS  Google Scholar 

  • Friesner RA, Banks JL, Murphy RB, Halgreen TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelly M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide a new approach for rapid accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  • Friesner RA, Murphy RB, Reposky MP, Frye LL, Greenword JR, Halgreen TA, Sanchagrin PC, Mainz DT (2006) Extra precision Glide: docking and scoring incorporating a model of hydrophobic enclosure for protein ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  PubMed  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant, JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) GAUSSIAN 03, revision B.04. Gaussian, Inc., Pittsburgh

  • Guo S, Xue R, Li Y, Wanga SM, Ren L, Xu JJ (2012) The CFP10/ESAT6 complex of Mycobacterium tuberculosis may function as regulator of macrophage cell death at different stages of tuberculosis infection. Med Hypotheses 78:389–392

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all atom force field on conformational energetic and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  • Lawn SD, Zumla Al (2011) Tuberculosis. Lancet 378(9785):57–72

    Article  PubMed  Google Scholar 

  • Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Doming BW, Feeney PJ (1997) Experimental and computational approach to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using Lamarckinn genetic algorithm and empirical binding force energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and Autodock Tools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ngo SC, Zimhony O, Chung WJ, Sayahi H, Jacobs WR, Welch JohnT (2007) Inhibition of isolated Mycobacterium tuberculosis fatty acid synthase I by pyrazinamide analogs. Antimicrob Agents Chemother 51(7):2430–2435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okafor OC (1977) Studies in the heterocyclic series XII, the chemistry and applications of aza and thia analogs of phenoxazine and related compounds. Hetrocycles 7:391–427

    Article  CAS  Google Scholar 

  • Olivier I, Loots DT (2011) An overview of tuberculosis treatments and diagnostics. What role could metabolomics play? J Cell Tissue Res 11:2655–2671

    Google Scholar 

  • Prime, version 3.1, Schrödinger, LLC, New York, NY (2010)

  • Qikprop: version 3.5, Schrödinger, LLC, New York, NY (2010)

  • Schenone S, Brullo C, Musumeci F, Botta M (2010) Novel dual Src/Abl inhibitors for hematologic and solid malignancies. Expert Opin Invest Drugs 19:931–945

    Article  CAS  Google Scholar 

  • Schrödinger, LLC, New York (2010)

  • Scior T, Morales M, Garces I, Eisele SJ, Domeyer D, Lanfer S (2002) Antitubercular isoniazid and drug resistance of Mycobacterium tuberculosis: a review. Arch Pharm 335:511–525

    Article  CAS  Google Scholar 

  • Sherman W, Day T, Jacobson MP, Frisner RA (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava T, Ramachandran R (2007) Mechanistic insights from the crystal structures of a feast/famine regulatory protein from Mycobacterium tuberculosis H37Rv. Nucleic Acids Res 35:7324–7335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srivastava HK, Chourasia M, Kumar D, Sastry GN (2011) Comparison of computational methods to model DNA minor groove binders. J Chem Inf Model 51:558–571

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RP, Tiwari N, Dwivedi N, Tiwari VK (2005) Fighting tuberculosis: an old disease with new challenges. Med Res Rev 25:93–131

    Article  CAS  PubMed  Google Scholar 

  • Trivedi AR, Dholariya BH, Vakhariya CP, Dodiya DK, Ram HK, Katariya VB, Siddiqui AB, Shah VH (2012) Synthesis and antitubercular evaluation of some novel pyrazolo[3,4-d]pyrimidine derivatives. Med Chem Res 21:1887–1891

    Article  CAS  Google Scholar 

  • Venkatesan R, Wierenga RK (2013) Structure of mycobacterial β-oxidation trifunctional enzyme reveals its altered assembly and putative substrate channeling pathway. ACS Chem Biol 8:1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Verlet L (1967) Computer ‘‘experiments’’ on classical fluids I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103

    Article  CAS  Google Scholar 

  • Yadava U, Singh M, Roychoudhury M (2013) Pyrazolo[3,4-d]pyrimidines as inhibitor of anti-coagulation and inflammation activities of phospholipase A2: insight from molecular docking studies. J Biol Phys 39:419–438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yadava U, Gupta H, Yadav RK, Roychoudhury M (2014) Docking and molecular dynamics simulations of pyrazolo[3,4-d]pyrimidine-DNA complexes. Adv Sci Lett 20(7–9):1637–1643

    Article  Google Scholar 

  • Young DB (1998) Blueprint for the white plague. Nature 393:515–516

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

U. Yadava is thankful to DST, New Delhi and UGC New Delhi for the award of Fast Track Young Scientist (F.No. SR/FT/CS-78/2010) and Raman Fellowship for post doctoral studies in USA (F.No. 5-1/2013(IC)) respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Yadava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadava, U., Shukla, B.K. & Roychoudhury, M. Pyrazolo[3,4-d]pyrimidines as the inhibitors of mycobacterial β-oxidation trifunctional enzyme. Med Chem Res 24, 4002–4015 (2015). https://doi.org/10.1007/s00044-015-1441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-015-1441-6

Keywords

Navigation