Advertisement

Medicinal Chemistry Research

, Volume 24, Issue 9, pp 3516–3528 | Cite as

Design, synthesis and anticancer activity of functionalized spiro-quinolines with barbituric and thiobarbituric acids

  • Ravi Kiran Bhaskarachar
  • Vijayakumar G. Revanasiddappa
  • Subramanya Hegde
  • Janardhana P. Balakrishna
  • Suman Y. Reddy
Original Research

Abstract

A new series of spiro-quinoline compounds have been accomplished by the reaction of barbituric acid or thiobarbituric acid with derivatives of benzisoxazole-5-carbaldehyde or 2-substituted benzaldehyde. These compounds were evaluated for their in vitro cytotoxicity on two mammalian cancer cell lines MCF-7 and KB. The compounds exhibit cytotoxicity against these cell lines in micromolar range. Among the series of compounds, 11(aj) particularly 11b and 11e showed relatively good activity against both the tested cell lines. Compound 11b was found to exhibit the highest cytotoxic activity with IC50 value 90.2 µM for MCF-7 and 49.8 µM for KB cell line. Flow cytometric analysis study confirmed that these molecules induced cytotoxicity via apoptosis.

Keywords

Spiro-quinoline Barbituric acid Benzisoxazole [1–5] Shift MTT assay Flow cytometry 

Notes

Acknowledgments

Authors show deep sense of gratitude to Department of Science and Technology (SERB), New Delhi, India, for their financial assistance (SR/FT/CS-145/2010) to the present work. Authors GRV and BR thank Tumkur University administration for their support and encouragement.

Conflict of interest

None.

Supplementary material

44_2015_1408_MOESM1_ESM.doc (4.7 mb)
Supplementary material 1 (DOC 4784 kb)

References

  1. Agbo SI, Hallas G, Towns AD (2000) Properties of some novel monoazo disperse dyes derived from ester-substituted tetrahydroquinoline and indoline coupling components. Dyes Pigm 47:33–43CrossRefGoogle Scholar
  2. Atul K, Suman S, Garima G, Vinita C, Sudhir S, Srivastava R (2011) Natural product inspired diversity oriented synthesis of tetrahydroquinoline scaffolds as antitubercular agent. ACS Comb Sci 13:65–71CrossRefGoogle Scholar
  3. Bassin SL, Bleck TP (2008) Barbiturates for the treatment of intracranial hypertension after traumatic brain injury. Crit Care 12:185PubMedCentralPubMedCrossRefGoogle Scholar
  4. Brendan K, Michela M, Carolina M, Jorge EO, Javier MJ, Luis FC, Isabel R (2015) α2-Adrenoceptor antagonists: synthesis, pharmacological evaluation, and molecular modeling investigation of pyridinoguanidine, pyridino-2-aminoimidazoline and their derivatives. J Med Chem 58:963–977CrossRefGoogle Scholar
  5. de Figueiredo RM, Fröhlich R, Christmann M (2006) N,N′-Carbonyldiimidazole-mediated cyclization of amino alcohols to substituted azetidines and other N-heterocycles. J Org Chem 71:4147–4154PubMedCrossRefGoogle Scholar
  6. Eric BL, Monique AB, Thatyana RAV, Manuel OM, Raquel CM, Jullianne DY, Katia ZL (2014) Synthesis and anticancer activity of (E)-2-benzothiazole hydrazones. Eur J Med Chem 86:12–16CrossRefGoogle Scholar
  7. Hallas G, Zhai KY (1996) Synthesis and electronic spectra of some azo disperse dyes derived from N-alkyl-1,2,3,4-tetrahydroquinoline. Dyes Pigm 32:187–192CrossRefGoogle Scholar
  8. Humar M, Andriopoulos N, Pischke SE, Loop T, Schmidt R, Hoetzel A, Roesslein M, Pahl HL, Geiger KK, Pannen BH (2004) Inhibition of activator protein 1 by barbiturates is mediated by differential effects on mitogen-activated protein kinases and the small g proteins Ras and Rac-1. J Pharmacol Exp Ther 311:1232–1240PubMedCrossRefGoogle Scholar
  9. Jon JH, Todd JF, Karen AR, Joanne MS, Cailan W, Zhong S, James RC, Tianan F, Pancras CW, Alan RR, Frank AB, Jeffrey MB, Joseph ML, Carol AW, Ge Z, Anzhi W, Vidhyashankar R, Paul EM, Gregory SB, Srinath S, Piramanayagam A, Arvind M, Dietmar AS, Ruth RW, Mimi LQ (2014) Phenylimidazoles as potent and selective inhibitors of coagulation factor XIa with in vivo antithrombotic activity. J Med Chem 57:9915–9932CrossRefGoogle Scholar
  10. Kaiser S, Smidt SP, Pfaltz A (2006) Iridium catalysts with bicyclic Pyridine–Phosphinite Ligands: asymmetric hydrogenation of olefins and furan derivatives. Angew Chem Int Ed 45:5194–5197CrossRefGoogle Scholar
  11. Kazuto U, Fumiya T, Yoshikazu K (2003) Regio-selective hydroxysubstitution of fluorobenzoic acid derivatives: facile synthesis of fluorosalicylic acid derivatives. J Fluorine Chem 121:97–99CrossRefGoogle Scholar
  12. Kepczynska E, Obloza E, Stasiewicz-Urban A, Bojarski J, Pyka A (2007) Lipophilicity of thiobarbiturates determined by TLC. Acta Pol Pharm 64:295–302PubMedGoogle Scholar
  13. Kim WG, Kim JP, Kim CJ, Lee KH, Yoo ID (1996a) Benzastatins A, B, C, and D: new free radical scavengers from Streptomyces nitrosporeus 30643. I. Taxonomy, fermentation, isolation, physico–chemical properties and biological activities. J Antibiot 49:20–25PubMedCrossRefGoogle Scholar
  14. Kim WG, Kim JP, Yoo ID (1996b) Benzastatins A, B, C, and D: new free radical scavengers from Streptomyces nitrosporeus 30643. II. Structure determination. J Antibiot 49:26–30PubMedCrossRefGoogle Scholar
  15. Kouznetsov VV, Arenas DRM, Arvelo F, Forero JSB, Sojo F, Muñoz A (2010) 4-Hydroxy-3-methoxyphenyl substituted 3-methyl-tetrahydroquinoline derivatives obtained through imino Diels–Alder reactions as potential antitumoral agents. Lett Drug Des Discov 7:632–639CrossRefGoogle Scholar
  16. Krasnov KA, Kartsev VG (2005) Synthesis of spiro heterocyclic systems from barbituric acids and N,N-disubstituted o-amino benzaldehydes. Russ J Org Chem 41:901–906CrossRefGoogle Scholar
  17. Massaro A, Mordini A, Reginato G, Russo F, Taddei M (2007) Microwave-assisted transformation of esters into hydroxamic acids. Synthesis. doi: 10.1055/s-2007-990803.
  18. Michael JP (2004) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 21:650–668PubMedCrossRefGoogle Scholar
  19. Michael JP (2005) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 22:627–646PubMedCrossRefGoogle Scholar
  20. Michael JP (2007) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 24:223–246PubMedCrossRefGoogle Scholar
  21. Michael JP (2008) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 25:166–187PubMedCrossRefGoogle Scholar
  22. Mimi LQ, Pancras CW, Cailan W, Francis W, Joanne MS, Frank AB, Jeffrey MB, Randi LB, Mark RH, Joseph ML, Paul EM, Tara P, Vidhyashankar R, Alan RR, Karen AR, Carol AW, Anzhi W, Ge Z, Dietmar S, Ruth RW (2014) Tetrahydroquinoline derivatives as potent and selective factor XIa inhibitors. J Med Chem 57:955–969CrossRefGoogle Scholar
  23. Mona MK, Naida YMA (2014) Synthesis of novel 1,2,4-triazoles, triazolothiadiazines and triazolothiadiazoles as potential anticancer agents. Eur J Med Chem 86:75–80CrossRefGoogle Scholar
  24. Onizuka S, Yonaha T, Tsuneyoshi I (2011) Local anesthetics with high lipophilicity are toxic, while local anesthetics with low pka induce more apoptosis in human leukemia cells. J Anesth Clin Res 2(1):1–5Google Scholar
  25. Patel DV, Gless RDJ, Webb H, Heather K, Anandan SK, Aavula BR (2008) Soluble epoxide hydrolase inhibitors. Int Patent WO 2008/073623 A2Google Scholar
  26. Pullmann T, Engendahl B, Zhang Z, Hölscher M, Zanotti-Gerosa A, Dyke A, Francio G, Leitner W (2010) Quinaphos and dihydro-quinaphos phosphine–phosphoramidite ligands for asymmetric hydrogenation. Chem Eur J 16:7517–7526PubMedCrossRefGoogle Scholar
  27. Rakotoson JH, Fabre N, Jacquemond CI, Hannedouche S, Fouraste I, Moulis C (1998) Alkaloids from Galipea officinalis. Planta Med 64:762–763PubMedCrossRefGoogle Scholar
  28. Ravi Kiran B, Palakshamurthy BS, Vijayakumar GR, Bharath HS (2014) 3,4-Difluoro-2-hydroxybenzoic acid. Acta Cryst E 70:0519. doi: 10.1107/S1600536814007211 CrossRefGoogle Scholar
  29. Riva E, Gagliardi S, Mazzoni C, Passarella D, Rencurosi A, Vigo D, Martinelli M (2009) Efficient continuous flow synthesis of hydroxamic acids and suberoylanilide hydroxamic acid preparation. J Org Chem 74:3540–3543PubMedCrossRefGoogle Scholar
  30. Romain G, Van LN, Jérôme T, Christophe S, Jean-Marie GB, Gael K, Olivier M, Alizon MR, Eric VB, Lionel T, Paul B, Hugh C, C C, Leanne C, Emmanuel HD, Rejbinder K, Antonia JL, Mark BS, Peter ES, Simon T, Ann LW, Walker MD, Rab KP, Edwige N (2014) The discovery of I-BET726 (GSK1324726A), a potent tetrahydroquinoline ApoA1 up-regulator and selective BET bromodomain inhibitor. J Med Chem 57:8111–8131CrossRefGoogle Scholar
  31. Ruble CJ, Hurd AR, Johnson TA, Sherry DA, Barbachyn MR, Toogood PL, Bundy GL, Graber DR, Kamilar GM (2009) Synthesis of (−)-pnu-286607 by asymmetric cyclization of alkylidene barbiturates. J Am Chem Soc 131:3991–3997PubMedCrossRefGoogle Scholar
  32. Schwarz M, Bonhotal J, Bischoff K, EbelJr JG (2013) Fate of barbiturates and non-steroidal anti-inflammatory drugs during carcass composting trends. Anim Vet Sci 4:1–12Google Scholar
  33. Singh P, Kaur M, Verma P (2009) Design, synthesis and anticancer activities of hybrids of indole and barbituric acids-identification of highly promising leads. Bioorg Med Chem Lett 19:3054–3058PubMedCrossRefGoogle Scholar
  34. Sweidan K, Engelmann J, Joshi R, Mubarak MS, El-Abadelah MM (2011) Synthesis of some cyclic methylene 1,3-diaza barbiturates derivatives. Lett Org Chem 8:603–605CrossRefGoogle Scholar
  35. Vermes I, Haanen C, Steffens NH, Reutelingsperger C (1995) A novel assay for apoptosis flow cytometric detection of phosphatidyl serine early apoptotic cells using fluorescein labelled expression on Annexin V. J Immunol Methods 184:39–51PubMedCrossRefGoogle Scholar
  36. Wang D, Ding K (2009) 2-Pyridinyl β-ketones as new ligands for room-temperature CuI-catalysed C–N coupling reactions. Chem Commun 14:1891–1893CrossRefGoogle Scholar
  37. Weixing Z, Qingzhong H, Nina H, Chris JVK, Rolf WH (2014) Potent 11β-hydroxylase inhibitors with inverse metabolic stability in human plasma and hepatic S9 fractions to promote wound healing. J Med Chem 57:7811–7817CrossRefGoogle Scholar
  38. Yamashita K, Imahashi S, Ito S (2008) Synthesis of benzylideneketone dyes and their photochemical properties as a sensitizer for alkali-developable photopolymerization systems. Dyes Pigm 76:748–753CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ravi Kiran Bhaskarachar
    • 1
  • Vijayakumar G. Revanasiddappa
    • 1
  • Subramanya Hegde
    • 2
  • Janardhana P. Balakrishna
    • 3
  • Suman Y. Reddy
    • 4
  1. 1.Department of Chemistry, UCSTumkur UniversityTumakuruIndia
  2. 2.Department of ChemistryGovernment Science CollegeBangaloreIndia
  3. 3.Stellixir Biotech Pvt Ltd.BangaloreIndia
  4. 4.Department of ChemistryIndian Institute of TechnologyKanpurIndia

Personalised recommendations