Skip to main content
Log in

GRID/BIOCUBE4mf to rank the influence of mutations on biological processes to design ad hoc mutants

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

One of the goals of protein engineering is to design mutants with improved biological profiles, i.e., broader specificity and elevated catalytic activity. Here, we propose a novel, fast and general protocol, based on new GRID/BIOCUBE4mf descriptors, to rank mutants for their ability to affect the pattern of interaction with the ligand, and thus their biological profile. The efficacy of the strategy is proven by establishing relationships between a new descriptor (SumΔn%) and Michaelis constants (K M) for a series of pentalenene synthase mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80:505–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braiuca P, Cruciani G, Ebert C, Gardossi L, Linda P (2004) An innovative application of the “flexible” GRID/PCA computational method: study of differences in selectivity between PGAs from Escherichia coli and a Providentia rettgeri mutant. Biotechnol Prog 20:1025–1031

    Article  CAS  PubMed  Google Scholar 

  • Caron G, Nurisso A, Ermondi G (2009) How to extend the use of grid-based interaction energy maps from chemistry to biotopics. ChemMedChem 4:29–36

    Article  CAS  PubMed  Google Scholar 

  • Chiappori F, D’Ursi P, Merelli M, Milanesi L, Rovida E (2009) In silico saturation mutagenesis and docking screening for the analysis of protein-ligand interaction: the Endothelial Protein C Receptor case study. MC Bioinform 10(Suppl 12):S3. doi:10.1186/1471-2105-10-S12-S3

    Google Scholar 

  • Dunbrack RL Jr (2002) Rotamer libraries in the 21st century. Curr Opin Struct Biol 12:431–440

    Article  CAS  PubMed  Google Scholar 

  • Eyal E, Najmanovich R, Edelman M, Sobolev V (2003) Protein side-chain rearrangement in regions of point mutations. Proteins 50(2):272–282

    Article  CAS  PubMed  Google Scholar 

  • Faber HR, Matthews BW (1990) A mutant T4 lysozyme displays five different crystal conformations. Nature 348:263–266

    Article  CAS  PubMed  Google Scholar 

  • Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biological important macromolecules. J Med Chem 28:849–857

    Article  CAS  PubMed  Google Scholar 

  • Jain AN (2009) Effects of protein conformation in docking: improved pose prediction through protein pocket adaptation. J Comput Aided Mol Des 23:355–374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lengauer T, Rarey M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6:402–406

    Article  CAS  PubMed  Google Scholar 

  • Sciabola S, Stanton RV, Mills JE, Flocco MM, Baroni M, Cruciani G, Perruccio F, Mason JS (2010) High-throughput virtual screening of proteins using GRID molecular interaction fields. J Chem Inf Model 50:155–169

    Article  CAS  PubMed  Google Scholar 

  • Seeback B, Reulecke I, Kaemper A, Rarey M (2008) Modeling of metal interaction geometries for protein-ligand docking. Proteins 71:1237–1254

    Article  Google Scholar 

  • Seemann M, Zhai G, de Kraker JW, Paschall CM, Christianson DW, Cane DE (2002) Pentalenene synthase. Analysis of active site residues by site-directed mutagenesis. J Am Chem Soc 124:7681–7689

    Article  CAS  PubMed  Google Scholar 

  • Soss M (2003) Rotamer exploration and prediction. http://www.chemcomp.com/journal/rotexpl.htm

  • Spyrakis F, Amadasi A, Fornabaio M, Abraham DJ, Mozzarelli A, Kellogg GE, Cozzini P (2007) The consequences of scoring docked ligand conformations using free energy correlations. Eur J Med Chem 42(7):921–933

    Article  CAS  PubMed  Google Scholar 

  • Vasquez M (1996) Modeling sidechain conformation. Curr Opin Struct Biol 6:217–221

    Article  CAS  PubMed  Google Scholar 

  • Wade RC, Goodford PJ (1993) Further development of hydrogen bond functions for use in determining energetically favorable binding sites on molecules of known structure. 2. Ligand probe groups with the ability to form more than two hydrogen bonds. J Med Chem 36:148–156

    Article  CAS  PubMed  Google Scholar 

  • Wade RC, Clark KJ, Goodford PJ (1993) Further development of hydrogen bond functions for use in determining energetically favorable binding sites on molecules of known structure. 1. Ligand probe groups with the ability to form two hydrogen bonds. J Med Chem 36:140–147

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2008) Progress and challenges in protein structure prediction. Curr Opin Struct Biol 18:342–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Caron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosso, C., Ermondi, G. & Caron, G. GRID/BIOCUBE4mf to rank the influence of mutations on biological processes to design ad hoc mutants. Med Chem Res 24, 2612–2620 (2015). https://doi.org/10.1007/s00044-015-1333-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-015-1333-9

Keywords

Navigation