Advertisement

Medicinal Chemistry Research

, Volume 24, Issue 5, pp 1916–1926 | Cite as

An efficient and eco-friendly synthesis and evaluation of antibactrial activity of pyrano[2,3-c]pyrazole derivatives

  • Manouchehr MamaghaniEmail author
  • Roghayeh Hossein Nia
  • Farhad Shirini
  • Khalil Tabatabaeian
  • Mehdi Rassa
Original Research

Abstract

A rapid, straightforward, and highly efficient one-pot synthesis of pyrano[2,3-c]pyrazole derivatives and spiro-conjugated pyrano[2,3-c]pyrazole has been developed based on newly introduced and environmentally benign Brønsted-acidic ionic liquid catalyst [DMBSI]HSO4 via one-pot four-component reaction under solvent-free conditions. The synthesized compounds were screened for their antibacterial activities against both gram-negative (Pseudomonas aeruginosa and Escherichia coli) and gram-positive (Micrococcus luteus and Bacillus subtilis) bacteria.

Graphical Abstract

Keywords

Hydrazine hydrate Pyrano[2,3-c]pyrazole Solvent-free Ionic liquid Antibacterial Spiro 

Notes

Acknowledgments

The authors are grateful to the Research Council of University of Guilan for the partial financial support of this research work.

Supplementary material

44_2014_1271_MOESM1_ESM.pdf (7.4 mb)
Supplementary material 1 (PDF 7598 kb)

References

  1. Baron EJ, Finegold SM (1990) Bailey and Scott’s diagnostic microbiology, 8th edn. C.V. Mosby Co., St. Louis, pp 1–861Google Scholar
  2. Bourdonnec BL, Windh RT, Leister LK, Zhou QJ, Gu CW, Ajello M, Chu G-H, Tuthill PA, Barker WM, Koblish M, Wiant DD, Graczyk TM, Belanger S, Cassel JA, Feschenko MS, Brogdon BL, Smith SA, Derelanko MJ, Kutz S, Little PJ, DeHaven RN, DeHaven-Hudkins DL, Dolle RE (2009) Spirocyclic delta opioid receptor agonists for the treatment of pain: discovery of N, N-Diethyl-3-hydroxy-4-(spiro[chromene-2,4′-piperidine]-4-yl) Benzamide (ADL5747). J Med Chem 52:5685–5702CrossRefPubMedGoogle Scholar
  3. Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (melton salt) phase organometalic catalysis. Chem Rev 102:3667–3692CrossRefPubMedGoogle Scholar
  4. Elinson MN, Dorofeev AS, Feducovich SK, Gorbunov SV, Nasybullin RF, Stepanov NO, Nikishin GI (2006) Electrochemically induced chain transformation of salicylaldehydes and alkyl cyanoacetates into substituted 4H-chromenes. Tetrahedron Lett 47:7629–7632CrossRefGoogle Scholar
  5. Elinson MN, Dorofeev AS, Miloserdov FM, Nikishin GI (2009) Electrocatalytic multicomponent assembling of isatins, 3-methyl-2-pyrazolin-5-ones and malononitrile: facile and convenient way to functionalized spirocyclic [indole-3,4′-pyrano[2,3-c]pyrazole] system. Mol Divers 13:47–52CrossRefPubMedGoogle Scholar
  6. El-Latif FFA, Gohar AKMN, Fahmy AM, Badr MA (1986) Novel synthesis of furo(2,3-b)indole derivatives. Bull Chem Soc Jpn 59:1235–1238CrossRefGoogle Scholar
  7. Foloppe N, Fisher LM, Howes R, Potter A, Robertson AGS, Surgenor AE (2006) Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorg Med Chem 14:4792–4802CrossRefPubMedGoogle Scholar
  8. Gadwood RC, Kamdar BV, Dubray LAC, Wolfe ML, Smith MP, Watt W, Mizsak SA, Groppit VE (1993) Synthesis and biological activity of spirocyclic benzopyran imidazolone potassium channel openers. J Med Chem 36:1480–1487CrossRefPubMedGoogle Scholar
  9. Gesson JP, Fonteneau N, Mondon M, Charbit S, Ficheux H, Schutze F (2005) U. S. Patent, 6, 965,039 B2Google Scholar
  10. Gogoi S, Zhao C-G (2009) Organocatalyzed enantioselective synthesis of 6-amino-5-cyanodihydropyrano[2,3-c]pyrazoles. Tetrahedron Lett 50:2252–2255CrossRefPubMedCentralPubMedGoogle Scholar
  11. Green GR, Evans JM, Vong AK (1995) In: Katritzky AR, Rees CW, Scriven EFV (eds) Comprehensive heterocyclic chemistry II, vol 5. Pergamon Press, Oxford, p 469Google Scholar
  12. Guo SB, Wang SX, Li JT (2007) d, l-Proline-catalyzed one-pot synthesis of pyrans and pyrano[2,3-c]pyrazole derivatives by a grinding method under solvent-free conditions. Synth Commun 37:2111–2120CrossRefGoogle Scholar
  13. Hossein Nia R, Mamaghani M, Tabatabaeian Kh, Shirini F, Rassa M (2012) An expeditious regioselective synthesis of novel bioactive indole-substituted chromene derivatives via one-pot three-component reaction. Bioorg Med Chem Lett 22:5956–5960CrossRefPubMedGoogle Scholar
  14. Hossein Nia R, Mamaghani M, Tabatabaeian Kh, Shirini F, Rassa M (2013) A rapid one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using Brønsted-acidic ionic liquid as catalyst. Acta Chim Slov 60:889–895Google Scholar
  15. Hossein Nia R, Mamaghani M, Shirini F, Tabatabaeian Kh, Heidary M (2014) Rapid and efficient synthesis of 1,4-dihydropyridines using a sulfonic acidfunctionalized ionic liquid. Org Prep Proc Int 46:152–163CrossRefGoogle Scholar
  16. Kanagaraj K, Pitchumani K (2010) Solvent-free multicomponent synthesis of pyranopyrazoles: per-6-amino-β-cyclodextrin as a remarkable catalyst and host. Tetrahedron Lett 51:3312–3316CrossRefGoogle Scholar
  17. Kuo SC, Huang LJ, Nakamura H (1984) Studies on heterocyclic compound. 6. Synthesis and analgesic and anti-inflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. J Med Chem 27:539–544CrossRefPubMedGoogle Scholar
  18. Litvinov YM, Shestopalov AA, Rodinovskaya LA, Shestopalov AM (2009) New convenient four-component synthesis of 6-amino-2,4-dihydropyrano[2,3-c]pyrazol-5-carbonitriles and one-pot synthesis of 6′-aminospiro[(3H)-indol-3,4′-pyrano[2,3-c]pyrazol]-(1H)-2-on-5′-carbonitriles. J Comb Chem 11:914–919CrossRefPubMedGoogle Scholar
  19. Liu Y, Ren Z, Cao W, Chen J, Deng H, Shao M (2011) Solvent-free one-pot synthesis of spiro[indoline-3,4′(1H′)-pyrano[2,3-c]pyrazol]-2-one derivatives by grinding. Synth Commun 41:3620–3626CrossRefGoogle Scholar
  20. Mamaghani M, Shirini F, Mahmoodi NO, Azimi-Roshan A, Hashemlou H (2013a) A green, efficient and recyclable Fe+3@K10 catalyst for the synthesis of bioactive pyrazolo[3,4-b]pyridin-6(7H)-ones under “on water” conditions. J Mol Struct 1051:169–176CrossRefGoogle Scholar
  21. Mamaghani M, Tabatabaeian Kh, Bayat M, Hossein Nia R, Rassa M (2013b) Regioselective synthesis and antibacterial evaluation of a new class of substituted pyrazolo[3,4-b]pyridines. J Chem Res 37(8):494–498CrossRefGoogle Scholar
  22. Mandha SR, Siliveri S, Alla M, Bommena VR, Bommineni MR, Balasubramanian S (2012) Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles. Bioorg Med Chem Lett 22:5272–5278CrossRefPubMedGoogle Scholar
  23. Mecadon H, Rohman MR, Mantu Rajbangshi M, Myrboh B (2011) γ-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in aqueous medium. Tetrahedron Lett 52:2523–2525CrossRefGoogle Scholar
  24. Oliver-Bourbigou H, Magna L (2002) Ionic liquids. Perspectives for organic and catalytic reactions. J Mol Catal A 182–183:419–437CrossRefGoogle Scholar
  25. Otto HH (1974) Darstellung einiger 4H-Pyrano[2,3-c]py razolderivate. Arch Pharm 307:444–447CrossRefGoogle Scholar
  26. Peng Y, Song G, Dou R (2006) surface cleaning under combind microwave and ultrasound irradiation: flash synthesis of 4H-pyrano[2,3-c]pyrazoles in aqueous media. Green Chem 8:573–575CrossRefGoogle Scholar
  27. Redkin RG, Shemchuk LA, Chernykh VP, Shishkin OV, Shishkina SV (2007) Synthesis and molecular structure of spirocyclic 2-oxindole derivatives of 2-amino-4 H-pyran condensed with the pyrazolic nucleus. Tetrahedron 63:11444–11450CrossRefGoogle Scholar
  28. Saeedi M, Heravi M, Beheshtiha YS, Oskooie HA (2010) One-pot three-component synthesis of the spiroacenaphthylene derivatives. Tetrahedron 66:5345–5348CrossRefGoogle Scholar
  29. Saffari Jourshari M, Mamaghani M, Tabatabaeian Kh, Shirini F, Rassa M, Langhari H (2012) An efficient ultrasound promoted one-pot three-component synthesis and antibacterial activities of novel pyrimido[4,5-b]quinoline- 4,6(3H,5H,7H,10H)-dione derivatives. Lett Org Chem 9:664–670CrossRefGoogle Scholar
  30. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 33:2399–2404CrossRefGoogle Scholar
  31. Siddekhab A, Nizama A, Pasha MA (2011) An efficient and simple approach for the synthesis of pyranopyrazoles using imidazole(catalytic) in aqueous media, and the vibrational spectroscopic studies on 6-amino-4-(4′-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole using density functional theory. Spectrochim Acta A 81:431–440CrossRefGoogle Scholar
  32. Song CE (2004) Enantioselective chemo- and bio-catalysis in ionic liquids. Chem Commun. doi: 10.1039/B309027B Google Scholar
  33. Stachulski AV, Berry NG, Lilian Low AC, Moores SL, Row E, Warhurst DC, Adagu IS, Rossignol JF (2006) identification of isoflavone derivatives as effective anticryptosporidial agent in vitro and vivo. J Med Chem 49:1450–1454CrossRefPubMedGoogle Scholar
  34. Sun W, Cama LJ, Birzin ET, Warrier S, Locco L, Mosely R, Hammond ML, Rohrer SP (2006) 6H-Benzo[c]chromen-6-one derivatives as selective ERβ agonists. Bioorg Med Chem Lett 16:1468–1472CrossRefPubMedGoogle Scholar
  35. Vasuki G, Kumaravel K (2008) Rapid four-component reactions in water: synthesis of pyranopyrazoles. Tetrahedron Lett 49:5636–5638CrossRefGoogle Scholar
  36. Wang JL, Liu D, Zheng ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z (2000) Structure-based discovery of an organic compound that binds Bcl-2protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 97:7124–7129CrossRefPubMedCentralPubMedGoogle Scholar
  37. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084CrossRefPubMedGoogle Scholar
  38. Ying Liua Y, Dong Zhoua D, Zhongjiao Rena Zh, Caoa W, Jie Chena J, Hongmei Deng H, Qing Gua QJ (2009) A green efficient synthesis of spiro[indoline-3,4′(1 H’)-pyrano [2,3-c]pyrazol]-2-one derivatives. J Chem Res 154–156Google Scholar
  39. Zaki MEA, Soliman HA, Hiekal OA, Rashad AEZ (2006) Pyrazolopyranopyrimidines as a class of anti-inflammatory agents. Z Naturforsch [C] 61:1-5CrossRefGoogle Scholar
  40. Zhou JF, Tu SJ, Zhu HQ, Zhi SJ (2002) A facile one pot synthesis of pyrano[2,3-c]pyrazole derivatives under micriwave irradiation. Synth Commun 32:3363–3366CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Manouchehr Mamaghani
    • 1
    Email author
  • Roghayeh Hossein Nia
    • 1
  • Farhad Shirini
    • 1
  • Khalil Tabatabaeian
    • 1
  • Mehdi Rassa
    • 2
  1. 1.Department of Chemistry, Faculty of SciencesUniversity of GuilanRashtIran
  2. 2.Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran

Personalised recommendations