Advertisement

Medicinal Chemistry Research

, Volume 24, Issue 5, pp 1964–1973 | Cite as

Effect of metabolites isolated from Cuscuta pedicellata on high fat diet-fed rats

  • Salwa H. Zekry
  • Dina M. Abo-elmatty
  • Rawia A. Zayed
  • Mohamed M. Radwan
  • Mahmoud A. ElSohly
  • Hashim A. Hassanean
  • Safwat A. AhmedEmail author
Original Research

Abstract

The aim of the present study was to determine if Cuscuta pedicellata extract has an effect on body weight and serum lipid profile in the HFD-fed rats’ animal model. The ethanol extract of C. pedicellata exhibited a significant reduction in body weight and serum lipid profile in this model. The n-hexane/EtOAc (1:1), EtOAc and MeOH/EtOAc (1:1) fractions were also active, while the MeOH fraction showed no beneficial effect. Bioactivity-guided fractionation leads to the isolation of ten pure compounds: naringenin (1), kaempferol (2), aromadenderin (3), quercitin (4), 3,5,7,3′,5′-pentahydroxy flavanone (5), naringenin -7-O-β-d-glucoside (6), aromadenderin -7-O-β-d-glucoside (7), Taxifolin -7-O-β-d-glucoside (8), kaempferol -3-O-β-d-glucoside (astragalin), (9) and quercitin -3-O-β-d-glucoside (isoquercitrin) (10). This is the first report of compounds 1, 3, 5, 6, 7, and 8 in Cuscuta pedicellata. Compound 1 > compound 8 > compound 3 > compound 7 > compound 4 > compound 2 are responsible for the potency of the ethanol extract, while compound 6 was only effective in reducing the total cholesterol serum levels but not effective in reducing the level of triglycerides or the body weight. Our data confirmed the anti-obesity effect of C. pedicellata reported by the Egyptian population and identified the compounds responsible for this activity.

Keywords

Cuscuta pedicellata Obesity Flavonoids Orlistat® 

Notes

Acknowledgments

The authors are grateful to Prof. Dr. Abd Elraof A., Professor of Botany, Faculty of Science, Suez Canal University for taxonomical identification of the plant.

Supplementary material

44_2014_1269_MOESM1_ESM.docx (5 mb)
Supplementary material 1 (DOCX 5112 kb)

References

  1. Al-Hallaq EK, Kasabri V, Abdalla SS, Bustanji YK, Afifi FU (2013) Anti-obesity and antihyperglycemic effects of Crataegus aronia extracts: in vitro and in vivo evaluations. Food Nutr Sci 4:972–983CrossRefGoogle Scholar
  2. Baek SW, Kim ER, Kim J, Kim YC (2011) Chemical constituents of Abies koreana leaves with inhibitory activity against nitric oxide production in bv2 microglia cells. Nat Prod Sci 17:175–180Google Scholar
  3. Bakhai MN, Tirgar PR (2013) In-vivo investigation of antiobesity activity of polyherbal formulation. IntJ Res Pharm Biomed Sci (IJRPBS) 4:1095–1103Google Scholar
  4. Campfield LA, Smith FJ, Burn P (1998) Strategies and potential molecular targets for obesity treatment. Science 280:1383–1387CrossRefPubMedGoogle Scholar
  5. Costea M (2007) Digital atlas of cuscuta (convolvulaceae). Wilfrid Laurier University Herbarium, Ottawa, pp 884–1970Google Scholar
  6. Elberry AA, Harraz FM, Ghareib SA, Gaber SA, Nagy AA, Abdel-Sattar E (2011) Methanolic extract of Marrubium vulgare ameliorates hyperglycemia and dyslipidemia in streptozotocin-induced diabetic rats. Int J Diabetes Mellit 10:1016Google Scholar
  7. Glenny AM, OˇıMeara S, Melville A, Sheldon TA, Wilson C (1997) The treatment and prevention of obesity: a systematic review of the literature. Int J Obes 21:715–737CrossRefGoogle Scholar
  8. Gödecke T, Kaloga M, Kolodziej H (2005) A phenol glucoside, uncommon coumarins and flavonoids from Pelargonium sidoides DC. Z Naturforsch 60b:677–682Google Scholar
  9. Jain R, Mittal M (2012) Naringenin, a flavonone from the stem of Nyctanthes arbortristis linn. Int J Biol Pharm Allied Sciences (IJBPAS) 1:964–972Google Scholar
  10. John V, Peter St, Billington CJ (2008) Pharmacotherapy : A Pathophysiologic approach, 7th edn. McGraw-Hill Professional, New York, pp 2437–2451Google Scholar
  11. Katz M (2006) Study Design and statistical analysis: a practical guide for clinicians. Cambridge University Press, London 155CrossRefGoogle Scholar
  12. Kazuma K, Noda N, Suzuki M (2003) Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 62:229–237CrossRefPubMedGoogle Scholar
  13. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568PubMedGoogle Scholar
  14. Lee I, Bae J, Kim T, Kwon J, Kim T (2011) Polyphenolic constituents from the aerial parts of thymus quinquecostatus var. japonica collected on Ulleung Island. J Korean Soc Appl Biol Chem 54:811–816CrossRefGoogle Scholar
  15. Li H, Hong-Zheng F (2009) Chemical constituents from fruits of Gymnocladus chinensis. Chin Herb Med 1:66–70Google Scholar
  16. Mnafgui K, Hamden K, Ben Salah H, Kchaou M, Nasri M, Slama S, Derbali F, Allouche N, Elfeki A (2012) Inhibitory activities of zygophyllum album: a natural weight-lowering plant on key enzymes in high-fat diet fed rats. Evid Based Complement Alternat Med 2012:620384. doi: 10.1155/2012/620384 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Mukhtar I, Khokhar I, Mushtaq S (2012) Cuscuta pedicellata (Convolvulaceae): a new parasitic weed recorded from Pakistan. Pak J Weed Sci Res 18:485–493Google Scholar
  18. Ohta Y, Sami M, Kanda T, Saito K, Osada K, Kata H (2006) Gene expression analysis of the anti-obesity effect by apple polyphenols in rats fed a high fat diet or a normal diet. J Oleo Sci 55:305–314CrossRefGoogle Scholar
  19. Park H, Kim H, Jeon S, Kim S, Chun W, Lim S, Kim M, Kwon Y (2009) Aldose reductase inhibitors from the leaves of Salix hulteni. J Korean Soc Appl Biol Chem 52:493–497CrossRefGoogle Scholar
  20. Pi-Sunyer FX (2002) The obesity epidemic: pathophysiology and consequences of obesity. Obesity 10:97S–104SCrossRefGoogle Scholar
  21. Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, Reaven GM (2000) A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 49:1390–1394CrossRefPubMedGoogle Scholar
  22. Song N, Xu W, Guan H, Liu X, Wang Y, Nie X (2007) Several flavonoids from Capsella bursa-pastoris (L.) Medic. Asian J Tradit Med 2:218–222Google Scholar
  23. Srinivasan K, Patole PS, Kaul CL, Ramarao P (2004) Reversal of glucose intolerance by PIO in high-fat diet fed rats. Methods Find Exp Clin Pharmacol 26:327–333CrossRefPubMedGoogle Scholar
  24. Täckholm V (1974) Students’ flora of Egypt, 2nd edn. Cairo University Press, CairoGoogle Scholar
  25. Zheng CD, Duan YQ, Gao JM, Ruan ZG (2010) Screening for anti-lipase properties of 37 traditional chinese medicinal herbs. J Chin Med Assoc 73:319–324CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Salwa H. Zekry
    • 1
  • Dina M. Abo-elmatty
    • 2
  • Rawia A. Zayed
    • 1
    • 3
  • Mohamed M. Radwan
    • 4
    • 5
  • Mahmoud A. ElSohly
    • 5
    • 6
  • Hashim A. Hassanean
    • 7
  • Safwat A. Ahmed
    • 7
    Email author
  1. 1.Department of Pharmacognosy, Faculty of PharmacySinai UniversityNorth SinaiEgypt
  2. 2.Department of Biochemistry, Faculty of PharmacySuez Canal UniversityIsmailiaEgypt
  3. 3.Department of Pharmacognosy, Faculty of PharmacyZagazig UniversityZagazigEgypt
  4. 4.National Center for Natural Products Research, School of PharmacyThe University of MississippiUniversityUSA
  5. 5.Department of Pharmacognosy, Faculty of PharmacyAlexandria UniversityAlexandriaEgypt
  6. 6.Department of Pharmaceutics, School of PharmacyThe University of MississippiUniversityUSA
  7. 7.Department of Pharmacognosy, Faculty of PharmacySuez Canal UniversityIsmailiaEgypt

Personalised recommendations