Medicinal Chemistry Research

, Volume 24, Issue 5, pp 1842–1856 | Cite as

Synthesis, in-vitro screening, and docking analysis of novel pyrrolidine and piperidine-substituted ethoxy chalcone as anticancer agents

  • Santosh N. MokaleEmail author
  • Pritam N. Dube
  • Swati A. Bhavale
  • Ibrahim Sayed
  • Afreen Begum
  • Manjusha C. Nevase
  • Vishakha R. Shelke
  • Abdul Mujaheed
Original Research


A series of novel-substituted chalcone analogs were synthesized and evaluated for antiproliferative activity against estrogen receptor-positive MCF-7 breast cancer cell lines. Among the synthesized derivatives 4a, 5a, 5b, 5c, 5e, 5′a, and 5′d show good antiproliferative activity as compared to standard tamoxifen. The study highlighted the advantage of introducing the amine side chain pharmacophore in substituted chalcone enhances the anticancer potential. The study also suggests that these analogs can serve as better therapeutic agents against breast cancer and can provide starting point for building more potent analogs in future. The binding mechanism and ADME properties of target compounds were analysed using Schrödinger software.


Chalcone Breast cancer Molecular docking ADME 



The authors are thankful to Tata Memorial Centre-Advanced Centre for Treatment, Research and Education in Cancer (ACTREC) Kharghar, Navi Mumbai for in-vitro assay against breast cancer activity. This work was supported by the Department of Science and Technology (DST), New Delhi, India (Project File No. SR/FT/LS-132/2012 & Sanction Diary No. SERB/F/4302/2012-13).


  1. Batovska DI, Todorova TI (2010) Trends in utilization of the pharmacological potential of chalcones. Curr Clin Pharmacol 5:1–29CrossRefPubMedGoogle Scholar
  2. Björnström L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19:833–842CrossRefPubMedGoogle Scholar
  3. Bray F, Ren JS, Masuver E, Ferlay J (2013) Estimates of global cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer 132:1133–1145CrossRefPubMedGoogle Scholar
  4. Cancer Trends Progress Report—2009/2010 update (2012) WHO website. and Accessed 10 Dec 2013.
  5. Cummings J, Ward TH, Ranson M, Dive C (2004) Apoptosis pathway-targeted drugs—from the bench to the clinic. Biochim Biophys Acta 1705:53–66PubMedGoogle Scholar
  6. DeConti RC (2012) Chemotherapy of squamous cell carcinoma of the skin. Semin Oncol 39:145–149CrossRefPubMedGoogle Scholar
  7. Deroo BJ, Korach KS (2006) Estrogen receptors and human disease. J Clin Invest 116:561–570CrossRefPubMedCentralPubMedGoogle Scholar
  8. Ding X, Bai D, Qian J (2014) Novel cyclotides from Hedyotis biflora inhibit proliferation and migration of pancreatic cancer cell in vitro and in vivo. Med Chem Res 23:1406–1413CrossRefGoogle Scholar
  9. Dube PN, Bule SS, Kumbhare MR, Dighe PR, Ushir YV (2014a) Synthesis of novel 5-methyl pyrazol-3-one derivatives and their in vitro Cytotoxic Evaluation. Med Chem Res. doi: 10.1007/s00044-014-1201-z Google Scholar
  10. Dube PN, Bule SS, Mokale SN, Kumbhare MR, Dighe PR, Ushir YV (2014b) Synthesis and biological evaluation of substituted 5-methyl-2-phenyl-1H-pyrazol-3(2H)-one derivatives as selective COX-2 inhibitors: molecular docking study. Chem Biol Drug Des. doi: 10.1111/cbdd.12324 PubMedGoogle Scholar
  11. Dube PN, Mokale SN, Datar P (2014c) CoMFA and docking study of 2, N6-disubstituted 1,2-dihydro-1,3,5-triazine-4,6-diamines as novel PfDHFR enzyme inhibitors for antimalarial activity. Bull Fac Pharm Cairo Univ 52:125–134CrossRefGoogle Scholar
  12. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2012) GLOBOCAN 2012v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11.Google Scholar
  13. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749CrossRefPubMedGoogle Scholar
  14. Glass AG, Lacey JV, Carreon JD, Hoover RNJ (2007) Breast cancer incidence, 1980–2006: combined roles of menopausal hormone therapy, screening mammography, and estrogen receptor status. J Natl Cancer Inst 99:1152–1161CrossRefPubMedGoogle Scholar
  15. Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N (2009) Triple-negative breast cancer—current status and future directions. Ann Oncol 20:1913–1927CrossRefPubMedGoogle Scholar
  16. International Agency for Research on Cancer, Lyon, France (2013). Accessed 2 July 2014.
  17. Irvin WJ, Carey LA (2008) What is triple-negative breast cancer? Eur J Cancer 44:2799–2805CrossRefPubMedGoogle Scholar
  18. Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, Grove JR (1999) MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci 88:28–33CrossRefPubMedGoogle Scholar
  19. Johnston SRD, Ford H, Ross P, Brighton D, Wood M (2005) The Royal Marsden Hospital hand book of cancer chemotherapy. Elsevier Churchill Livingstone, London, pp 1–17Google Scholar
  20. Kashid AM, Dube PN, Alkutkar PG, Bothara KG, Mokale SN, Dhawale SC (2013) Synthesis, biological activity and ADME prediction of new series of benzylindole derivatives as novel antiHIV-1, antifungal and antibacterial agents. Med Chem Res 22:4633–4640CrossRefGoogle Scholar
  21. Katzenellenbogen BS (2002) Defining the “S” in SERMs. J Appl Sci 295:2380–2381Google Scholar
  22. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25CrossRefGoogle Scholar
  23. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26CrossRefPubMedGoogle Scholar
  24. Lokwani DK, Sarkate AP, Shinde DB (2013) 3D-QSAR and docking studies of benzoyl urea derivatives as tubulin-binding agents for antiproliferative activity. Med Chem Res 22:1415–1425CrossRefGoogle Scholar
  25. Maestro, version 9.3, Schrödinger, LLC, New York, NY, 2012.Google Scholar
  26. Mareel M, Leroy A (2003) Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 83:337–376CrossRefPubMedGoogle Scholar
  27. Marin JJ, Sanchez de Medina F, Castaño B, Bujanda L, Romero MR, Augustin M-O, Moral-Avila RD, Briz O (2012) Chemoprevention, chemotherapy, and chemoresistance in colorectal cancer. Drug Metab Rev 44:148–172CrossRefPubMedGoogle Scholar
  28. Modzelewska A, Pettit C, Achanta G, Davidson NE, Huang P, Khan SR (2006) Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorg Med Chem 14:3491–3495CrossRefPubMedGoogle Scholar
  29. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Boyd MR (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer 83:757–766CrossRefGoogle Scholar
  30. Nelson G, Alam MA, Atkinson T, Gurrapu S, Kumar JS, Bicknese C, Johnson JL, Williams M (2013) Synthesis and evaluation of p-N,N-dialkyl-substituted chalcones as anti-cancer agents. Med Chem Res 22:4610–4614CrossRefGoogle Scholar
  31. Orlikova B, Tasdemir D, Golais F, Dicato M, Diederich M (2011) Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr 6:125–147CrossRefPubMedCentralPubMedGoogle Scholar
  32. QikProp, version 3.5, Schrödinger, LLC, New York, NY, 2012.Google Scholar
  33. Reis-Filho JS, Tutt AN (2008) Triple negative tumours: a critical review. Histopathology 52:108–118CrossRefPubMedGoogle Scholar
  34. Sahu NK, Balbhadra SS, Choudhary J, Kohli DV (2012) Exploring pharmacological significance of chalcone scaffold: a review. Curr Med Chem 19:209–225CrossRefPubMedGoogle Scholar
  35. Shagufta Srivastava AK, Sharma R, Mishra R, Balapure AK, Murthy P, Panda G (2006) Substituted phenanthrenes with basic amino side chains: a new series of anti-breast cancer agents. Bioorg Med Chem 14:1497–1505CrossRefPubMedGoogle Scholar
  36. Shenvi S, Kumar K, Hatti KS, Rijesh K, Diwakar L, Reddy GC (2013) Synthesis, anticancer and antioxidant activities of 2,4,5-trimethoxy chalcones and analogues from asaronaldehyde: structure–activity relationship. Eur J Med Chem 62:435–442CrossRefPubMedGoogle Scholar
  37. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29CrossRefPubMedGoogle Scholar
  38. Skehn P, Storeng R, Scudiero A, Monks J, McMohan D, Vistica D, Jonathan TW, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112CrossRefGoogle Scholar
  39. Tanwar O, Marella A, Shrivastava S, Alam MM, Akhtar M (2013) Pharmacophore model generation and 3D-QSAR analysis of N-acyl and N-aroylpyrazolines for enzymatic and cellular B-Raf kinase inhibition. Med Chem Res 22:2174–2187CrossRefGoogle Scholar
  40. Wei BL, Teng CH, Wang JP, Won SJ, Lin CN (2007) Synthetic 2′,5′-dimethoxychalcones as G2/M arrest-mediated apoptosis-inducing agents and inhibitors of nitric oxide production in rat macrophages. Eur J Med Chem 42:660–668CrossRefPubMedGoogle Scholar
  41. Weschel J, Haglund K, Haugsten EM (2011) Fibroblast growth factors and their receptors in cancer. Biochem J 437:199–213CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Santosh N. Mokale
    • 1
    Email author
  • Pritam N. Dube
    • 1
  • Swati A. Bhavale
    • 1
  • Ibrahim Sayed
    • 1
  • Afreen Begum
    • 1
  • Manjusha C. Nevase
    • 1
  • Vishakha R. Shelke
    • 1
  • Abdul Mujaheed
    • 1
  1. 1.Department of Pharmaceutical ChemistryY.B. Chavan College of PharmacyAurangabadIndia

Personalised recommendations