Advertisement

Medicinal Chemistry Research

, Volume 24, Issue 5, pp 1830–1841 | Cite as

Synthesis, docking study, and DNA photocleavage activity of some pyrimidinyl hydrazones and 3-(quinolin-3-yl)-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidine derivatives

  • Ajay Sharma
  • Vinod KumarEmail author
  • Rajshree Khare
  • Girish Kumar Gupta
  • Vikas Beniwal
Original Research

Abstract

In the present study, synthesis of a series of some novel 3-(Quinolin-3-yl)-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidine derivatives (4ae) has been achieved by oxidative cyclization of new pyrimidinyl hydrazone intermediates (3ae) using hypervalent iodine reagent(III) under mild conditions. The structures of all synthesized compounds were established on the basis of IR, NMR (1H and 13C), mass spectral data, and elemental analysis. All compounds were evaluated for their DNA photocleavage activity. Compounds 4a, 4b, 4d and 3ae were found to possess good activity at 40 μg/μl concentration and were mainly responsible for the conversion of supercoiled form of DNA into open circular form. Further, docking study was carried out using Molegro Virtual Docker version 2010.4.2.0 using PDB (1AB4) in support of the results obtained.

Keywords

Quinoline Triazolopyrimidine Hydrazone (Diacetoxyiodo)benzene DNA photocleavage activity Docking study 

References

  1. Abdel-Wahab BF, Khidre RE, Farahat AA, El-Ahl AAS (2012) 2-Chloroquinoline-3-carbaldehydes: synthesis, reactions and applications. ARKIVOC i:211–276.Google Scholar
  2. Aggarwal R, Kumar V, Tyagi P, Singh SP (2006) Synthesis and antibacterial study of some new 1-heteroaryl-5-amino-3H/methyl-4-phenylpyrazole. Bioorg Med Chem 14:1785–1791CrossRefPubMedGoogle Scholar
  3. Aggarwal R, Sumran G, Kumar V, Mittal A (2011) Copper (II) chloride mediated synthesis and DNA photocleavage activity of 1-aryl/heteroaryl-4-substituted-1,2,4-triazolo[4,3-a]quinoxalines. Eur J Med Chem 46:6083–6088CrossRefPubMedGoogle Scholar
  4. Allen CFH, Reynolds GA, Tinker JF, Williams LA (1960) Structure of certain polyazaindenes. V Synth J Org Chem 25:361–366Google Scholar
  5. Aravinda T, Naik HSB, Naik HRP (2009) 1,2,3-Triazole fused quinoline-peptidomimetics: studies on synthesis, DNA binding and photonuclease activity. Int J Pept Res Ther 15:273–279CrossRefGoogle Scholar
  6. Atwell GJ, Baguley BC, Denny WA (1989) Potential antitumor agents. 57. 2-Phenylquinoline-8-carboxamides as minimal DNA-intercalating antitumor agents with in vivo solid tumor activity. J Med Chem 32:396–401CrossRefPubMedGoogle Scholar
  7. Bekhit AA, El-Sayed OA, Aboulmagd E, Park JY (2004) Tetrazolo[1,5-a]quinoline as a potential promising scaffold for the synthesis of novel anti-inflammatory and antibacterial agents. Eur J Med Chem 39:249–255CrossRefPubMedGoogle Scholar
  8. Bindu PJ, Mahadevan KM, Satyanarayan ND, Naik TRR (2012) Synthesis and DNA cleavage studies of novel quinoline oxime esters. Bioorg Med Chem Lett 22:898–900CrossRefPubMedGoogle Scholar
  9. Cairns H, Cox D, Gould KJ, Ingall AH, Suschitzky JL (1985) New antiallergic pyrano[3,2-g]quinoline-2,8-dicarboxylic acids with potential for the topical treatment of asthma. J Med Chem 28:1832CrossRefPubMedGoogle Scholar
  10. Chen YL, Chen IL, Tzeng CC, Wang TC (2000) Synthesis and cytotoxicity evaluation of certain α-methylidene-γ-butyrolactones bearing coumarin, flavones, xanthone, carbazole and dibenzofuran moieties. Helv Chim Acta 83:989–994CrossRefGoogle Scholar
  11. Chia EW, Pearce AN, Berridge MV, Larsen L, Perry NB, Sansom CE, Godfrey CA, Hanton LR, Lu GL, Walton M, Denny WA, Webb VL, Copp BR, Harper JL (2008) Synthesis and anti-inflammatory structure- activity relationships of thiazine-quinoline-quinones: inhibitors of the neutrophil respiratory burst in a model of acute gouty arthritis. Bioorg Med Chem 21:9432–9442CrossRefGoogle Scholar
  12. Dandia A, Sarawgia P, Arya K, Khaturia S (2006) Mild and ecofriendly tandem synthesis of 1,2,4-triazolo[4,3-a]pyrimidines in aqueous medium. ARKIVOC xvi:83–92.Google Scholar
  13. Daniels JS, Gates KS (1996) DNA cleavage by antitumor agent 3-Amino-1,2,4-benzotriazine 1,4-dioxide (SR4233): evidence for involvement of hydroxyl radical. J Am Chem Soc 118:3380–3385CrossRefGoogle Scholar
  14. Dinakaran VS, Bomma B, Srinivasan KK (2012) Fused pyrimidines: the heterocycle of diverse biological and pharmacological significance. Der Pharma Chem 4:255–265Google Scholar
  15. El Ashry ESH, Rashed N (1999) 1,2,4-Triazolo- and Tetrazolo [x,y-z]pyrimidines. In: Katritzky AR (ed) Advances in heterocyclic chemistry, vol 72. Academic Press, London, pp 127–224Google Scholar
  16. Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR (1989) Vogel’s textbook of practical organic chemistry, 5th edn. Longman Scientific & Technical, England, pp 916–917Google Scholar
  17. Ghosh S, Nie AH, An J, Huang ZW (2006) Structure-based virtual screening of chemical libraries for drug discovery. Curr Opin Chem Biol 10:194–202CrossRefPubMedGoogle Scholar
  18. Gibson MS (1963) Hydrazone-IV the bromination of benzylidene 2-pyridylhydrazone. Tetrahedron 19:1587–1589CrossRefGoogle Scholar
  19. Guidi GD, Condorelli G, Costanzo LL, Giuffrida S, Monti S, Sortino S (1998) Molecular mechanisms of photosensitization induced by drugs on biological systems and design of photoprotective systems. In: Albini A, Fasani E (eds) Drugs: photochemistry and photostability. The Royal Society of Chemistry, Cambridge, pp 201–203Google Scholar
  20. Jain KS, Chitre TS, Miniyar PB, Kathiravan MK, Bendre VS, Veer VS, Shahane SR, Shishoo CJ (2006) Biological and medicinal significance of pyrimidines. Curr Sci 90:793–803Google Scholar
  21. Kaminsky D, Meltzer RI (1968) Quinoline antibacterial agents. Oxolinic acid and related compounds. J Med Chem 11:160–163CrossRefPubMedGoogle Scholar
  22. Kumar V, Aggarwal R, Tyagi P, Singh SP (2005) Synthesis and antibacterial activity of some new 1-heteraryl-5-amino-4-phenyl-3-trifluoromethylpyrazoles. Eur J Med Chem 40:922–927CrossRefPubMedGoogle Scholar
  23. Kumar V, Gupta GK, Kaur K, Singh R (2013) Fluorophenylhydrazones as potential COX-2 inhibitors: a novel, efficient, one pot solid phase synthesis, docking study and pharmacological evaluation. Med Chem Res 22:5890–5900CrossRefGoogle Scholar
  24. Kuo SC, Lee HZ, Juang JP, Lin YT, Wu TS, Chang JJ, Lednicer D, Paull KD, Lin CM, Hamel E, Lee KH (1993) Synthesis and cytotoxicity of 1,6,7,8-substituted 2-(4’-substituted phenyl)-4-quinolones and related compounds: identification as antimitotic agents interacting with tubulin. J Med Chem 36:1146–1156CrossRefPubMedGoogle Scholar
  25. Marella A, Tanwar OP, Saha R, Ali MR, Srivastava S, Akhter M, Shaquiquzzaman M, Alam MM (2013) Quinoline: a versatile heterocyclic. Saudi Pharm J 21:1–12CrossRefPubMedCentralPubMedGoogle Scholar
  26. Meth-Cohn O, Rhouati S, Tarnowski B, Robinson A (1981) A versatile new synthesis of quinolines and related fused pyridines. Part 8. Conversion of anilides into 3-substituted quinolines and into quinoxalines. J Chem Soc Perkin Trans 1:1537–1543CrossRefGoogle Scholar
  27. Nakamura T, Oka M, Aizawa K, Soda H, Fukuda M, Terashi K, Ikeda K, Mizuta Y, Noguchi Y, Kimura Y, Tsuruo T, Kohno S (1999) Direct interaction between a quinoline derivative, MS-209, and multidrug resistance protein (MRP) in human gastric cancer cells. Biochem Biophys Res Commun 255:618–624CrossRefPubMedGoogle Scholar
  28. Oshiro Y, Sakurai Y, Sato S, Kurahashi N, Tanaka T, Kikuchi T, Tottori K, Uwahodo Y, Miwa T, Nishi T (2000) 3,4-Dihdro-2(1H)-quinolinone as a novel antidepressant drug: synthesis and pharmacology of 1-[3-[4-(3-Chlorophenyll)-1-piperazinyl]-3,4-dihydro-5-methoxy-2(1H)-quinolinone and its derivatives. J Med Chem 43:177–189CrossRefPubMedGoogle Scholar
  29. Ozturk F, Acik L, Sener I, Karci F, Kilic E (2012) Antimicrobial properties and DNA interaction studies of 3-hetaryazoquinoline-2,4-diol compounds. Turk J Chem 36:293–302Google Scholar
  30. Pelaprat D, Oberlin R, Guen IL, Roques P (1980a) DNA intercalating compounds as potential antitumor agents. 1. Preparation and properties of 7H-pyridocarbazoles. J Med Chem 23:1330–1335CrossRefPubMedGoogle Scholar
  31. Pelaprat D, Oberlin R, Guen IL, Roques P (1980b) DNA intercalating compounds as potential antitumor agents. 2. Preparation and properties of 7H-pyridocarbazoles dimmers. J Med Chem 23:1336–1343CrossRefPubMedGoogle Scholar
  32. Pollak A, Tisler M (1966) Synthesis of pyridazine derivatives-V: formation of s-triazolo-(4,3-b)-pyridazines and bis-s-triazolo-(4,3-b,3’,4’-f)-pyridazines. Tetrahedron 22:2073–2079CrossRefGoogle Scholar
  33. Reddy PR, Raju N (2012) Gel-electrophoresis and its applications. In: Magdeldin S (ed) Gel electrophoresis-principles and basics. doi: 10.5772/38479. http://www.intechopen.com/books/gel-electrophoresis-principles-and-basics/gel-electrophoresis-and-its-applications. Accessed 20 Sept 2013.
  34. Saini RP, Kumar V, Gupta AK, Gupta GK (2014) Synthesis, characterization and antibacterial activity of a novel heterocyclic Schiff’s base and its metal complexes of first transition series. Med Chem Res 23:690–698CrossRefGoogle Scholar
  35. Selvam TP, James CR, Dniandev PV, Valzita SK (2012) A mini review of pyrimidine and fused pyrimidine marketed drugs. Res Pharm 2:1–9Google Scholar
  36. Shaban MAE, Morgaan AEA (1999) The chemistry of 1,2,4-triazolopyrimidine I: 1,2,4-triazolo[4,3-a]pyrimidines. In: Katritzky AR (ed) Advances in heterocyclic chemistry, vol 72. Academic Press, London, pp 131–177Google Scholar
  37. Strekowski L, Mokrosz JL, Honkan VA, Czarny A, Cegla MT, Patterson SE, Wydra RL, Schinazi RF (1991) Synthesis and quantitative structure- activity relationship analysis of 2-(aryl or heteroaryl)quinolin-4-amines, a new class of anti-HIV-1 agents. J Med Chem 34:1739–1746CrossRefPubMedGoogle Scholar
  38. Thomsen R, Christensen MH (2006) MolDock: a new technique for high accuracy molecular docking. J Med Chem 49:3315–3321Google Scholar
  39. Toshima K, Takano R, Maeda Y, Suzuki M, Asai A, Matsumura S (1999) 2-Phenylquinoline-carbohydrate hybrids: molecular design, chemical synthesis, and evaluation of a new family of light-activatable DNA-cleaving agents. Angew Chem Int Ed 38:3733–3735CrossRefGoogle Scholar
  40. Vorvoglis A (1997) Chemical transformation using hypervalent iodine reagents. Tetrahedron 53:1179–1255CrossRefGoogle Scholar
  41. Xia Y, Yang ZY, Xia P, Bastow KF, Tachibana Y, Kuo SC, Hamel E, Hackl T, Lee KH (1998) Antitumor agents. 181. Synthesis and biological evaluation of 6,7,2’,3’,4’-substituted-1,2,3,4-tetrahydro-2-phenyl-4-quinolines as a new class of antimitotic antitumor agents. J Med Chem 41:1155–1162CrossRefPubMedGoogle Scholar
  42. Xiao Z, Waters NC, Woodard CL, Li PK (2001) Design and synthesis of Pfmrk inhibitors as potential antimalarial agents. Bioorg Med Chem Lett 11:2875–2878CrossRefPubMedGoogle Scholar
  43. Yao W, Qian X (2001) Oxazolonaphthalimides and their hydroperoxides: photophysical and photobiological properties. Dyes Pigm 48:43–47CrossRefGoogle Scholar
  44. Zhdankin W (2009) Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC i:1–62.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ajay Sharma
    • 1
  • Vinod Kumar
    • 1
    Email author
  • Rajshree Khare
    • 1
  • Girish Kumar Gupta
    • 2
  • Vikas Beniwal
    • 3
  1. 1.Department of ChemistryMaharishi Markandeshwar UniversityAmbalaIndia
  2. 2.Department of Pharmaceutical Chemistry, Maharishi Markandeshwar College of PharmacyMaharishi Markandeshwar UniversityAmbalaIndia
  3. 3.Department of BiotechnologyMaharishi Markandeshwar UniversityAmbalaIndia

Personalised recommendations