Medicinal Chemistry Research

, Volume 24, Issue 5, pp 1974–1987 | Cite as

Design, synthesis, biological evaluation and toxicity studies of N,N-disubstituted biguanides as quorum sensing inhibitors

  • Shaminder Singh
  • Pravin J. Wanjari
  • Sonam Bhatia
  • Vijay C. Sonwane
  • Asit K. Chakraborti
  • Prasad V. BharatamEmail author
Original Research


A series of novel N,N-disubstituted biguanides (8a8j) have been synthesized using varied secondary amines and cyanoguanidine under microwave irradiation. All the synthesized compounds were evaluated for quorum sensing inhibition (QSI) activity using Chromobacterium violaceum (ATCC12472)-based bioassay. Out of these ten compounds, two compounds 8a and 8g (IC50 = 179 and 120 µM) showed maximum QSI activity. Decrease in violacein production was observed in the range of 0.2–200 µM concentration for these respective compounds. The molecular docking studies revealed that N,N-disubstituted biguanides shared structural complementarity with CviR domain. Furthermore, TOPKAT analysis on Ames mutagenicity and carcinogenicity models had shown that this class of compounds has least probability (0.000–0.009) of exhibiting toxicity in experimental models.

Graphical abstract

The C6-AHL (native ligand) and CviR complex function as transcriptional activator of genes such as vioA, which is controlled by quorum sensing and leads to production of purple coloured pigment violacein. This pigment production is inhibited by the synthetic ligand 8g which binds in place of native AHL ligand and thereby interfere with the phenomenon of quorum sensing.


Biguanides Microwave assisted synthesis Molecular docking Quorum sensing Chromobacterium violaceum TOPKAT analysis 



S. Singh is thankful to Council of Scientific and Industrial Research (CSIR), India, S. Bhatia is thankful to Department of Science and Technology (DST), and P. J. Wanjari is grateful to National Institute of Pharmaceutical Education and Research (NIPER) S.A.S.-Nagar, India for financial support.

Supplementary material

44_2014_1255_MOESM1_ESM.docx (4.8 mb)
Supplementary material 1 (DOCX 4873 kb)


  1. Amara N, Mashiach R, Amar D, Krief P, Spieser SA, Bottomley MJ, Aharoni A, Meijler MM (2009) Covalent inhibition of bacterial quorum sensing. J Am Chem Soc 131:10610–10619CrossRefPubMedGoogle Scholar
  2. Angelucci R, Artini D, Giraldi PN, Logemann W, Nannini G (1961) Antiviral activity of 2,4-diamino-s-triazine derivs. Farmaco Edizione Scientifica 16:663–673PubMedGoogle Scholar
  3. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  4. Berstein LM (2005) Clinical usage of hypolipidemic and antidiabetic drugs in the prevention and treatment of cancer. Cancer Lett 224:203–212CrossRefPubMedGoogle Scholar
  5. Bharatam PV, Patel DS, Iqbal P (2005) Pharmacophoric features of biguanide derivatives: an electronic and structural analysis. J Med Chem 48:7615–7622CrossRefPubMedGoogle Scholar
  6. Bhatia S, Bharatam PV (2014) Possibility of the existence of donor–acceptor interactions in bis(azole)amines: an electronic structure analysis. J Org Chem. doi: 10.1021/jo402862r PubMedGoogle Scholar
  7. Bhatia S, Bagul C, Kasetti Y, Patel DS, Bharatam PV (2012) Divalent N(I) character in 2-(thiazol-2-yl)guanidine: an electronic structure analysis. J Phys Chem A 116:9071–9079CrossRefPubMedGoogle Scholar
  8. Bhatia S, Malkhede YJ, Bharatam PV (2013) Existence of dynamic tautomerism and divalent N(I) character in N-(pyridin-2-yl)thiazol-2-amine. J Comput Chem 34:1577–1588CrossRefPubMedGoogle Scholar
  9. Broxton P, Woodcock PM, Gilbert P (1983) A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coli ATCC 8739. J Appl Bacteriol 54:345–353CrossRefPubMedGoogle Scholar
  10. Campbell RK, White JR Jr, Saulie BA (1996) Metformin: a new oral biguanide. Clin Ther 18:360–371CrossRefPubMedGoogle Scholar
  11. Campbell J, Lin Q, Geske GD, Blackwell HE (2009) New and unexpected insights into the modulation of LuxR-type quorum sensing by cyclic dipeptides. ACS Chem Biol 4:1051–1059CrossRefPubMedGoogle Scholar
  12. Castang S, Chantegrel B, Deshayes C, Dolmazon R, Gouet P, Haser R, Reverchon S, Nasser W, Hugouvieux-Cotte-Pattat N, Doutheau A (2004) N-Sulfonyl homoserine lactones as antagonists of bacterial quorum sensing. Bioorg Med Chem Lett 14:5145–5149CrossRefPubMedGoogle Scholar
  13. Chen G, Swem LR, Swem DL, Stauff DL, O’Loughlin CT, Jeffrey PD, Bassler BL, Hughson FM (2011) A strategy for antagonizing quorum sensing. Mol Cell 42:199–209CrossRefPubMedCentralPubMedGoogle Scholar
  14. Cumming G, Fidler F, Vaux DL (2007) Error bars in experimental biology. J Cell Biol 177:7–11CrossRefPubMedCentralPubMedGoogle Scholar
  15. Degrassi G, Aguilar C, Bosco M, Zahariev S, Pongor S, Venturi V (2002) Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: cross-talk with quorum sensing bacterial sensors. Curr Microbiol 45:250–254CrossRefPubMedGoogle Scholar
  16. Denys A, Machlanski T, Bialek J, Mrozicki S (1977) Relation between chemical structure and antiviral activity of some biguanide derivatives. Praeventivmedizin 164:85–89Google Scholar
  17. Flagan S, Ching WK, Leadbetter JR (2003) Arthrobacter strain VAI-A utilizes acyl-homoserine lactone inactivation products and stimulates quorum signal biodegradation by Variovorax paradoxus. Appl Environ Microbiol 69:909–916CrossRefPubMedCentralPubMedGoogle Scholar
  18. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196CrossRefPubMedGoogle Scholar
  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09:EM64L-G09RevB.01, Gaussian, Inc., WallingfordGoogle Scholar
  20. Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111:28–67CrossRefPubMedGoogle Scholar
  21. Geske GD, O’Neill JC, Miller DM, Mattmann ME, Blackwell HE (2007) Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action. J Am Chem Soc 129:13613–13625CrossRefPubMedCentralPubMedGoogle Scholar
  22. Glansdorp FG, Thomas GL, Lee JK, Dutton JM, Salmond GPC, Welch M, Spring DR (2004) Synthesis and stability of small molecule probes for Pseudomonas aeruginosa quorum sensing modulation. Org Biomol Chem 2:3329–3336CrossRefPubMedGoogle Scholar
  23. Gonthier JF, Steinmann SN, Roch L, Ruggi A, Luisier N, Severin K, Corminboeuf C (2012) π-Depletion as a criterion to predict π-stacking ability. Chem Commun 48:9239–9241CrossRefGoogle Scholar
  24. Han Y, Hou S, Simon KA, Ren D, Luk YY (2008) Identifying the important structural elements of brominated furanones for inhibiting biofilm formation by Escherichia coli. Bioorg Med Chem Lett 18:1006–1010CrossRefPubMedGoogle Scholar
  25. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Høiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102PubMedGoogle Scholar
  26. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815CrossRefPubMedCentralPubMedGoogle Scholar
  27. Houari A, Di Martino P (2007) Effect of chlorhexidine and benzalkonium chloride on bacterial biofilm formation. Lett Appl Microbiol 45:652–656CrossRefPubMedGoogle Scholar
  28. Jadhav GP, Chhabra SR, Telford G, Hooi DSW, Righetti K, Williams P, Kellam B, Pritchard DI, Fischer PM (2011) Immunosuppressive but non-LasR-inducing analogues of the Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone. J Med Chem 54:3348–3359CrossRefPubMedGoogle Scholar
  29. Jensen NP, Ager AL, Bliss RA, Canfield CJ, Kotecka BM, Rieckmann KH, Terpinski J, Jacobus DP (2001) Phenoxypropoxybiguanides, prodrugs of DHFR-inhibiting diaminotriazine antimalarials. J Med Chem 44:3925–3931CrossRefPubMedGoogle Scholar
  30. Katritzky AR, Tala SR, Singh A (2010) Biguanidines, guanylureas and guanylthioureas. ARKIVOC viii:76–96.Google Scholar
  31. Kelarev VI, Silin MA, Borisova OA (2003) Synthesis and properties of sym-triazine derivatives. 18*. Synthesis of n-substituted 2,4-diamino-6-(benzothiazolyl-2-thiomethyl)-sym-triazines. Chem Heterocycl Compd 39:632–639CrossRefGoogle Scholar
  32. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949CrossRefPubMedGoogle Scholar
  33. Krebs FC, Miller SR, Ferguson ML, Labib M, Rando RF, Wigdahl B (2005) Polybiguanides, particularly polyethylene hexamethylene biguanide, have activity against human immunodeficiency virus type 1. Biomed Pharmacother 59:438–445CrossRefPubMedGoogle Scholar
  34. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B: Condens Matter 37:785–789CrossRefGoogle Scholar
  35. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592CrossRefPubMedGoogle Scholar
  36. Mayer S, Daigle DM, Brown ED, Khatri J, Organ MG (2004) An expedient and facile one-step synthesis of a biguanide library by microwave irradiation coupled with simple product filtration. Inhibitors of dihydrofolate reductase. J Comb Chem 6:776–782CrossRefPubMedGoogle Scholar
  37. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711CrossRefPubMedGoogle Scholar
  38. McInnis CE, Blackwell HE (2011) Thiolactone modulators of quorum sensing revealed through library design and screening. Bioorg Med Chem 19:4820–4828CrossRefPubMedCentralPubMedGoogle Scholar
  39. McLaughlin M, Palucki M, Davies IW (2006) Efficient access to azaindoles and indoles. Org Lett 8:3307–3310CrossRefPubMedGoogle Scholar
  40. McLean RJC, Pierson LS III, Fuqua C (2004) A simple screening protocol for the identification of quorum signal antagonists. J Microbiol Methods 58:351–360CrossRefPubMedGoogle Scholar
  41. Müh U, Schuster M, Heim R, Singh A, Olson ER, Greenberg EP (2006) Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agents Chemother 50:3674–3679CrossRefPubMedCentralPubMedGoogle Scholar
  42. Ozer EA, Pezzulo A, Shih DM, Chun C, Furlong C, Lusis AJ, Greenberg EP, Zabner J (2005) Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol Lett 253:29–37CrossRefPubMedGoogle Scholar
  43. Park DK, Lee KE, Baek CH, Kim IH, Kwon JH, Lee WK, Lee KH, Kim BS, Choi SH, Kim KS (2006) Cyclo(Phe-Pro) modulates the expression of ompU in Vibrio spp. J Bacteriol 188:2214–2221CrossRefPubMedCentralPubMedGoogle Scholar
  44. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  45. Patel DS, Bharatam PV (2009) Novel (+)N(<–L)2 species with two lone pairs on nitrogen: systems isoelectronic to carbodicarbenes. Chem Commun 1064–1066Google Scholar
  46. Patel DS, Bharatam PV (2011) Divalent N(I) compounds with two lone pairs on nitrogen. J Phys Chem A 115:7645–7655CrossRefPubMedGoogle Scholar
  47. Persson T, Hansen TH, Rasmussen TB, Skindersø ME, Givskov M, Nielsen J (2005) Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem 3:253–262CrossRefPubMedGoogle Scholar
  48. Peterson DS, Milhous WK, Wellems TE (1990) Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria. Proc Natl Acad Sci USA 87:3018CrossRefPubMedCentralPubMedGoogle Scholar
  49. Rahman AA, Daoud MK, Dukat M, Herrick-Davis K, Purohit A, Teitler M, do Amaral AT, Malvezzi A, Glennon RA (2003) Conformationally-restricted analogues and partition coefficients of the 5-HT3 serotonin receptor ligands meta-chlorophenylbiguanide (mCPBG) and meta-chlorophenylguanidine (mCPG). Bioorg Med Chem Lett 13:1119–1123CrossRefPubMedGoogle Scholar
  50. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Kote M, Nielsen J, Eberl L, Givskov M (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814CrossRefPubMedCentralPubMedGoogle Scholar
  51. Reverchon S, Chantegrel B, Deshayes C, Doutheau A, Cotte-Pattat N (2002) New synthetic analogues of N-acyl homoserine lactones as agonists or antagonists of transcriptional regulators involved in bacterial quorum sensing. Bioorg Med Chem Lett 12:1153–1157CrossRefPubMedGoogle Scholar
  52. Riedel K, Köthe M, Kramer B, Saeb W, Gotschlich A, Ammendola A, Eberl L (2006) Computer-aided design of agents that inhibit the cep quorum-sensing system of Burkholderia cenocepacia. Antimicrob Agents Chemother 50:318–323CrossRefPubMedCentralPubMedGoogle Scholar
  53. Sabbah M, Fontaine F, Grand L, Boukraa M, Efrit ML, Doutheau A, Soulère L, Queneau Y (2012) Synthesis and biological evaluation of new N-acyl-homoserine-lactone analogues, based on triazole and tetrazole scaffolds, acting as LuxR-dependent quorum sensing modulators. Bioorg Med Chem 20:4727–4736CrossRefPubMedGoogle Scholar
  54. Schrödinger Suite 2009 Protein Preparation Wizard; Epik version 2.0, S., LLC, New York, NY, 2009; Impact version 5.5, Schrödinger, LLC, New York, NY, 2009; Prime version 2.1, Schrödinger, LLC, New York, 2009Google Scholar
  55. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree–Fock, Møller–Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100:16502–16513CrossRefGoogle Scholar
  56. Setter SM, Iltz JL, Thams J, Campbell RK (2003) Metformin hydrochloride in the treatment of type 2 diabetes mellitus: a clinical review with a focus on dual therapy. Clin Therap 25:2991–3026CrossRefGoogle Scholar
  57. Shapiro SL, Parrino VA, Freedman L (1958) Hypoglycemic Agents. III.1−3 N1-alkyl- and aralkylbiguanides. J Am Chem Soc 81:3728–3736CrossRefGoogle Scholar
  58. Shapiro SL, Parrino VA, Rogow E, Freedman L (1959) Hypoglycemic agents. II.1−3 Arylbiguanides. J Am Chem Soc 81:3725–3728CrossRefGoogle Scholar
  59. Shoichet BK, McGovern SL, Wei B, Irwin JJ (2002) Lead discovery using molecular docking. Curr Opin Chem Biol 6:439–446CrossRefPubMedGoogle Scholar
  60. Stevens AM, Queneau Y, Soulere L, Bodman Sv, Doutheau A (2011) Mechanisms and synthetic modulators of AHL-dependent gene regulation. Chem Rev 111:4–27CrossRefPubMedGoogle Scholar
  61. Thomas L, Russell AD, Maillard JY (2005) Antimicrobial activity of chlorhexidine diacetate and benzalkonium chloride against Pseudomonas aeruginosa and its response to biocide residues. J Appl Microbiol 98:533–543Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shaminder Singh
    • 1
  • Pravin J. Wanjari
    • 2
  • Sonam Bhatia
    • 2
  • Vijay C. Sonwane
    • 1
  • Asit K. Chakraborti
    • 2
  • Prasad V. Bharatam
    • 2
    Email author
  1. 1.Bio-chemical Engineering Research and Process Development Centre (BERPDC)Institute of Microbial TechnologyChandigarhIndia
  2. 2.Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER)S.A.S. NagarIndia

Personalised recommendations