Skip to main content
Log in

Syntheses of arylcinnamic acids, using Alum-Cs2CO3 as precursors of new 2-heterostyrylbenzimidazoles and their antimicrobial evaluation

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A simple and green methodology has been developed for the syntheses of some new 2-styrylbenzimidazoles. In this method, 2-styrylbenzimidazoles 6(ax) were synthesized by the condensation of o-phenylenediamines 4(ac) with cinnamic acids 3(ah) using glycerol containing boric acid (10 mol%) as the reaction medium at 180 °C about 3–5 h. The cinnamic acids 3(a–h) were obtained by the condensation between aromatic aldehydes 1(ah), and malonic acid using a new heterogeneous catalytic system such as alum-Cs2CO3 in water is described. Compounds 6(a–x) were also obtained alternatively by the condensation of 2-methylbenzimidazoles 5(a-c) with 1(a-h) using the same glycerol containing boric acid (10 mol%) as reaction medium at 180 °C for 5–6 h. The catalytic systems mentioned here were found to be highly active, stable, and recyclable under reaction conditions. All the newly synthesized compounds were characterized by IR, Mass, and NMR spectral analyses. All synthesized compounds were screened for their antimicrobial activity against the clinical strains which include gram-positive bacteria (Micrococcus luteus MTCC 2470, Staphylococcus aureus MTCC 96, Staphylococcus aureus MLS-16 MTCC 2940, Bacillus subtilis MTCC 121) and gram-negative bacteria (Escherichia coli MTCC 739, Pseudomonas aeruginosa MTCC 2453, Klebsiella planticola MTCC 530, and Candida albicans MTCC 3017). The results revealed that compounds (6b, 6g, 6h, 6j, 6k, 6n, 6o, 6t) exhibited significant antibacterial activity almost equal to the standard drug, i.e., Ciprofloxacin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amsterdam D, Loman V (eds) (1996) Antibiotics in laboratory medicine, 4th edn. Williams & Wilkins, Baltimore, pp 52–111

    Google Scholar 

  • Azizian J, Mohammoladi AA, Karimi AR, Mohammoladizadeh MR (2006) KAl(SO4)2·12H2O (alum) a reusable catalyst for the synthesis of some 4-substituted coumarins via Pechmann reaction under solvent-free conditions. Appl Catal A 300:85

    Article  CAS  Google Scholar 

  • Bahrami K, Khodaei MMOL, Kavianinia I (2007) A simple and efficient one-pot synthesis of 2-substituted benzimidazoles. Synthesis 4:547–550

    Article  Google Scholar 

  • Berg DV, Zoellner KR, Ogunrombi MO, Malan SF, Blanche GT, Castagnoli N, Bergh JJ, Petzer JP (2007) Inhibition of monoamine oxidase B by selected benzimidazole and caffine analogues. Bioorg Med Chem 15:3692–3702

    Article  PubMed  Google Scholar 

  • Cernatescu C, Comanita E (2005) Benzazole derivatives IV. Chem Ind Chem Eng Q 11(1):19–24

    Article  CAS  Google Scholar 

  • Corper HJ, Gauss H, Gekler WA (1920) Studies on the inhibitory action of sodium cinnamate in tuberculosis. Colo Am Rev Tuberc 4:464–473

    CAS  Google Scholar 

  • Dabiri M, Baghbanzadeh M, Kiani S, Vakilzadeh Y (2007) Alum (KAl(SO4)2·12H2O): An Efficient and inexpensive catalyst for the one-pot synthesis of 1,3,4-oxadiazoles under solvent-free conditions. Monatsh Chem 138:997

    Article  CAS  Google Scholar 

  • Dubey PK, Kumar R, Grossert JS, Hooper DL (1999) A facile and convenient method for the synthesis of 2-styrylbenzimidazoles. Indian J Chem 38B:1211–1213

    CAS  Google Scholar 

  • Evans BE, Rittle KE, DiPardo RM, Freidinger RM, Whitter WL, Lundell GF, Veber DF, Anderson PS (1988) Methods for drug discovery: development of proteins, selective, orally effective cholecystokinin antagonists. J Med Chem 31(12):2235–2246

    Article  CAS  PubMed  Google Scholar 

  • Gainsborough H (1928) A note on the use of benzyl cinnamic ester in tuberculosis. The method of Jacobsen. Lancet 211(5462):908–909

    Article  Google Scholar 

  • Gu Y, Jerome F (2010) Glycerol as sustainable solvent for green chemistry. Green Chem 12:1127–1138

    Article  CAS  Google Scholar 

  • Gu Y, Barrault J, Jerome F (2008) Glycerol as an efficient promoting medium for organic reactions. Adv Synth Catal 350:2007–2012

    Article  CAS  Google Scholar 

  • Heravi MMOL, Sadjadi S, Oskooie HA, Shoar RH, Bamoharram FF (2008) Heteropolyacids as heterogeneous and recyclable catalysts for the synthesis of benzimidazoles. Catal Commun 9:504–507

    Article  CAS  Google Scholar 

  • Jacobson MJ (1919) Ethylcinnamate in experimental tuberculosis. Bull Mém Soc Méd Hôsp Paris 35:322–325

    CAS  Google Scholar 

  • Jacobus P, Petzer Salome S, Castagnoli KP, Chen Jiang-Fan, Schwarzschild MA, Van der Schyf CJ, Castagnoli N (2003) Inhibition of monoamine oxidase b by selective adenosine A2A receptor antagonists. Bioorg Med Chem 11:1299–1310

    Article  Google Scholar 

  • Khalafi-Nezhad A, Rad MNS, Mohbatkar H, Asrari Z, Hemmolateenejad B (2005) Design, synthesis, antibacterial and QSAR studies of benzimidazole and imidazole chloroaryloxyalkyl derivatives. Bioorg Med Chem 13(6):1931–1938

    Article  CAS  PubMed  Google Scholar 

  • Li CJ (1993) Organic reactions in aqueous media with a focus on carbon-carbon bond formation. Chem Rev 93:2023

    Article  CAS  Google Scholar 

  • Marcus AV, Alencar de, Edgar FO de Jesus, Alexandre RM, Jose, Silva SL (2005) International Nuclear Atlantic Conference-INAC, Santos, Brazil, August 28 to September 2

  • Nakamoto K (1991) Infrared Spectra and Raman Spectra of Inorganic and Coordination Compounds. [Russian translation], Moscow, pp. 153, 518–519

  • Narasimhan B, Sharma D, Kumar P (2012) Benzimidazole: a medicinally important heterocyclic moiety. Med Chem Res 21(3):269–283

    Article  CAS  Google Scholar 

  • Pellerin C (2005) Chemistry goes green. ejournal USA; Global Issues: June

  • Pyysalo T, Torkkeli H, Honkanen E (1977) The thermal decarboxylation of some substituted cinnamicacids. Lebensm Wiss Technol 10:145

    CAS  Google Scholar 

  • Santosh SC, Chandrashekhar DU (2011) Synthesis and antioxidant activity of some novel 2-substituted analogues of benzimidazoles. J Pharm Res 4(2):340–343

    Google Scholar 

  • Shingalapur RV, Hosamani KM, Keri RS (2009) Synthesis and evaluation of in vitroanti-microbial and anti-tubercular activity of 2-styrylbenzimidazoles. Eur J Med Chem 44(10):4244–4248

    Article  CAS  PubMed  Google Scholar 

  • Sullivan WR (1970) New benzimidazoles. J Med Chem 13(4):784–786

    Article  CAS  PubMed  Google Scholar 

  • Suresh KD, Sandhu JS (2011) Alum [KAl(SO4)2·12H2O] an efficient, novel, clean catalyst for Doebner Knovenagel Reaction for efficient production of α, β-unsaturated acids. Ind J Chem 50B:1479–1483

    CAS  Google Scholar 

  • Tempest P, Ma V, Thomas S, Hua Z, Kelly CH (2001) Two-step solution-phase synthesis of novel benzimidazoles utilizing a UDC (Ugi/de-Boc/cyclize) strategy. Tett Lett 42:4959–4962

    Article  CAS  Google Scholar 

  • Warbasse JP (1894) Cinnamic acid in the treatment of tuberculosis. Ann Surg 19:02–117

    Article  Google Scholar 

  • Wojciechowska R, Wojciechowski W, Kamiński J (1988) Thermal decomposition of ammolonium and potash alums. J Therm Anal 33:503–509

    Article  Google Scholar 

  • Wolfson A, Dlugy C, Shotland Y (2007) Glycerol as a green solvent for high product yields & selectivity. Environ Chem Lett 5:67–71

    Article  CAS  Google Scholar 

  • Xiangming H, Huiqiang M, Yulu M (2007) p-TsOH Catalyzed synthesis of 2-arylsubstituted benzimidazoles. Arkivoc xiii:150–154

    Article  Google Scholar 

Download references

Acknowledgments

The Authors are thankful to Jawaharlal Nehru Technological University Hyderabad College of Engineering, Hyderabad for providing laboratory facilities and also grateful for CSIR-CDRI, Lucknow for providing financial support in the form of OSDD Project. The authors are also thankful to CFRD, Osmania University, Hyderabad for providing Spectral analysis facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ashok Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashok Kumar, T., Kishore Babu, P.N. & Rama Devi, B. Syntheses of arylcinnamic acids, using Alum-Cs2CO3 as precursors of new 2-heterostyrylbenzimidazoles and their antimicrobial evaluation. Med Chem Res 24, 1351–1364 (2015). https://doi.org/10.1007/s00044-014-1208-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1208-5

Keywords

Navigation