Skip to main content
Log in

The polyion complex nano-prodrug of doxorubicin (DOX) with poly(lactic acid-co-malic acid)-block-polyethylene glycol: preparation and drug controlled release

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A polyion complex nano-prodrug based on the complexation of the ionomer of poly(lactic acid-co-malic acid)-block-polyethylene glycol [Poly(LA-co-MA)-b-PEG] with doxorubicin (DOX) was developed. The ionomer was prepared by a direct polycondensation of d,l-lactic acid (LA), l-malic acid (MA), and monomethyl polyethylene glycol (PEG) using stannous chloride (SnCl2) as the catalyst. The nanoparticles were formed through electrostatic interactions between the side carboxyl groups of MA units in the ionomer and amino groups of DOX. The nanoparticle possessed an amphiphilic structure with a hydrophobic core of the complexed DOX and Poly(LA-co-MA) and a hydrophilic shell of PEG. The nanoparticle solution was stable, and the particle sizes were in the range of 110–140 nm. The DOX was loaded as a prodrug with loading rate as high as 18.2 %. The drug release could be controlled, showing responsiveness of acids and ionic strength. The cumulative release was as high as 94 %. The nanoparticles could be potentially used as anti-cancer drug vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Batrakova EV, Bronich TK, Vetro JA, Kabanov AV (2006) Polymeric micelles as drug carriers. In: Torchilin V (ed) Nanoparticulates as drug carriers. Imperial College Press, London, pp 57–93

  • Braud C, Bunel C, Vert M (1985) Poly(β-malic acid): a new polymeric drug-carrier-Evidence for degradation in vitro. Polym Bull 13:293–299

    Article  CAS  Google Scholar 

  • Cai H, Ni CH, Zhang LP (2012) Preparation of complex nano-particles based on alginic acid/poly[(2-dimethylamino) ethyl methacrylate] and a drug vehicle for doxorubicin release controlled by ionic strength Original Research Article. Eur J Pharm Sci 45:43–49

    Article  CAS  PubMed  Google Scholar 

  • Calderón M, Graeser R, Kratz F, Haag R (2009) Development of enzymatically cleavable prodrugs derived from dendritic polyglycerol. Bioorg Med Chem 19:3725

    Article  Google Scholar 

  • Cammas S, Béar MM, Moine L, Escalup R, Ponchel G, Kataoka K, Guérin P (1999) Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices. Int J Biol Macromol 25:273–282

    Article  CAS  PubMed  Google Scholar 

  • Coulembier O, Degee P, Gerbaux P, Wantier P, Barbaud C, Flammang R, Guerin P, Dubois P (2005) Synthesis of Amphiphilic Poly((R, S)-β-malic acid)-graft-poly(ε-caprolactone): “Grafting From” and “Grafting Through” Approaches. Macromolecules 38:3141–3150

    Article  CAS  Google Scholar 

  • Domurado D, FourniéP Braud C, Vert M, Guérin P, Simonnet F (2003) In vivo fates of degradable poly(β-malic acid) and of its precursor, malic acid. J Bioact Compat Polym 18:23–32

    Article  CAS  Google Scholar 

  • Du JZ, Chen DP, Wang YC et al (2006) Synthesis and Micellization of Amphiphilic Brush-Coil Block Copolymer Based on Poly(ε-caprolactone) and PEGylated Polyphosphoester. Biomacromolecules 7:1898–1903

    Article  CAS  PubMed  Google Scholar 

  • Gasslmaier B, Krell CM, Seebach D, Holler E (2000) Synthetic substrates and inhibitors of beta-poly(L-malate)-hydrolase (polymalatase). Eur J Biochem 267:5101–5105

    Article  CAS  PubMed  Google Scholar 

  • Harada A, Kataoka K (1995) Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules 28:5294–5299

    Article  CAS  Google Scholar 

  • Kabanov AV, Kabanov VA (1998) Interpolyelectrolyte and block ionomer complexes for gene delivery: physico-chemical aspects. Adv Drug Deliver Rev 30:49–60

    Article  CAS  Google Scholar 

  • Kabanov AV, Vinogradov SV, Suzdaltseva YG, Alakhov VY (1995) Water-soluble block polycations as carriers for oligonucleotide delivery. Bioconjugate Chem 6:639–643

    Article  CAS  Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131

    Article  CAS  PubMed  Google Scholar 

  • Lavasanifar A, Samuel J, Kwon GS (2002) Poly(ethylene oxide)-block- poly(l-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 54(169):160

    Google Scholar 

  • Lee BS, Vert M, Holler E (2002) In: Doi Y, Steinbuechel A (eds) Water-soluble aliphatic polyesters: poly(malic acid)s. biopolymers. Wiley, New York, pp 75–103

    Google Scholar 

  • Li GY, Guo L, Meng YF, Zhang T (2011) Self-assembled nanoparticles from thermo-sensitive polyion complex micelles for controlled drug release. Chem Eng J 174:199–205

    Article  CAS  Google Scholar 

  • Liu JY, Pang Y, Huang W, Huang XH, Meng LL, Zhu XY, Zhou YF, Yan DY (2011) Bioreducible micelles self-assembled from amphiphilic hyperbranched multiarm copolymer for glutathione-mediated intracellular drug delivery. Biomacromolecules 12:1567–1577

    Article  CAS  PubMed  Google Scholar 

  • Liu CX, Liu FX, Feng LX, Li M, Zhang J, Zhang N (2013) The targeted co-delivery of DNA and doxorubicin to tumor cells via multifunctional PEI-PEG based nanoparticles. Biomaterials 34:2547–2564

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Yuan ZF, Chen XJ, Li F, Zhuo RX (2012) A facile preparation of novel multifunctional vectors by non-covalent bonds for co-delivery of doxorubicin and gene. Acta Biomater 8:599–607

    Article  CAS  PubMed  Google Scholar 

  • Nelson SK, Wataha JC, Neme AML, Cibirka RM, Lockwood PE (1999) Cytotoxicity of dental casting alloys pretreated with biologic solutions. J Prosthet Dent 81:591–596

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HK, Lemieux P, Vinogradov SV, Gebhart CL, Guerin N, Paradis G, Bronich TK, Alakhov VY, Kabanov AV (2000) Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther 7:126–138

    Article  CAS  PubMed  Google Scholar 

  • Ni CH, Cai H, Yuan LH (2013) Polyion complex micelles based on poly[(2-dimethylamino) ethyl methacrylate-co-diacetone acrylamide] and alginic acid: preparation, characterization and pH-controlled doxorubicin release. J Controlled Release 172:e16–e17

    Article  Google Scholar 

  • Pioletti DP, Takei H, Lin T, Landuyt PV, Ma QJ, Kwon SY, Sung KLP (2000) The effects of calcium phosphate cement particles on osteoblast functions. Biomaterials 21:1103–1114

    Article  CAS  PubMed  Google Scholar 

  • Poon YF, Cao Y, Zhu YB, Judeh ZMA, Chan-Park MB (2009) Addition of β-malic acid-containing poly(ethylene glycol) dimethacrylate to form biodegradable and biocompatible hydrogels. Biomacromolecules 10:2043–2052

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Kavitha K, Prabhu M, Meenakshisundaram N, Rajendran V (2013) Nanohydroxyapatite–chitosan–gelatin polyelectrolyte complex with enhanced mechanical and bioactivity. Mater Sci Eng C 33:3237–3244

    Article  CAS  Google Scholar 

  • Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170

    Article  CAS  Google Scholar 

  • Tang GP, Zeng JM, Gao SJ, Ma YX, Shi L, Li Y, Too HP, Wang S (2003) Polyethylene glycol modified polyethylenimine for improved CNS gene transfer: effects of PEGylation extent. Biomaterials 24:2351–2362

    Article  CAS  PubMed  Google Scholar 

  • Teng Z, Luo YC, Wang Q (2013) Carboxymethyl chitosan–soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3. Food Chem 141:524–532

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ni CH, Zhang YN, Zhang M, Li W, Yao BL, Zhang LP (2014) Preparation and pH controlled release of polyelectrolyte complex ofpoly(l-malic acid-co-d, l-lactic acid) and chitosan. Colloids Surf B 115:275–279

    Article  CAS  Google Scholar 

  • Yang XQ, Grailer JJ, Pilla S, Steeber DA, Gong SQ (2010) Tumor-targeting, ph-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy. Bioconjugate Chem 21:496–504

    Article  CAS  Google Scholar 

  • Zhao ZM, He M, Yin LC, Bao JM, Shi LL, Wang BQ, Tang C, Yin CH (2009) Biodegradable nanoparticles based on linoleic acid and poly(β-malic acid) double grafted chitosan derivatives as carriers of anticancer drugs. Biomacromolecules 10:565–572

    Article  CAS  PubMed  Google Scholar 

  • Zhao YF, Qin YT, Liang Y, Zou HJ, Peng X, Huang H, Lu M, Feng M (2013) Salt-induced stability and serum-resistance of polyglutamate polyelectrolyte brushes/nuclear factor-κb p65 sirna polyplex enhance the apoptosis and efficacy of doxorubicin. Biomacromolecules 14:1777–1786

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Cheng R, Tao HQ, Ma SB, Guo WW, Meng FH, Liu HY, Liu Z, Zhong ZY (2011) Endosomal pH-activatable poly(ethylene oxide)-graft-doxorubicin prodrugs: synthesis, drug release, and biodistribution in tumor-bearing mice. Biomacromolecules 12:1460–1467

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Science and Technology Support Program of Jiangsu Province (BE2012017); State Key Laboratory of Hydrology-Water Resources, and Hydraulic Engineering, Hohai University (2012490911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caihua Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ni, C., Shi, G. et al. The polyion complex nano-prodrug of doxorubicin (DOX) with poly(lactic acid-co-malic acid)-block-polyethylene glycol: preparation and drug controlled release. Med Chem Res 24, 1189–1195 (2015). https://doi.org/10.1007/s00044-014-1206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1206-7

Keywords

Navigation